Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $ż\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form $$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)} dx $$ as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function. Bibliography: 9 titles.

About the authors

Aleksandr Mechislavovich Kytmanov

Siberian Federal University

Email: AKytmanov@sfu-kras.ru
Doctor of physico-mathematical sciences, Professor

Azimbay Sadullaevich Sadullaev

National University of Uzbekistan named after M. Ulugbek

Email: sadullaev@mail.ru

References

  1. W. F. Osgood, Lehrbuch der Funktionentheorie, v. II, Part 1, 2. Aufl., Teubner, Leipzig, 1929, viii+307 pp.
  2. В. И. Арнольд, А. Н. Варченко, С. М. Гусейн-Заде, Особенности дифференцируемых отображений. Классификация критических точек, каустик и волновых фронтов, Наука, М., 1982, 304 с.
  3. И. А. Икромов, “Демпфированные осцилляторные интегралы и максимальные операторы”, Матем. заметки, 78:6 (2005), 833–852
  4. И. А. Икромов, Ш. А. Муранов, “Об оценках осцилляторных интегралов с множителем гашения”, Матем. заметки, 104:2 (2018), 200–215
  5. А. С. Садуллаев, “Критерии алгебраичности аналитических множеств”, Функц. анализ и его прил., 6:1 (1972), 85–86
  6. М. Эрве, Функции многих комплексных переменных, Мир, М., 1965, 165 с.
  7. Б. В. Шабат, Введение в комплексный анализ, т. 2, Функции нескольких переменных, 3-е изд., Наука, М., 1985, 474 с.
  8. А. М. Кытманов, Интеграл Бохнера–Мартинелли и его применения, Наука, Новосибирск, 1992, 240 с.
  9. Е. М. Чирка, Комплексные аналитические множества, Наука, М., 1985, 272 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kytmanov A.M., Sadullaev A.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).