Central extensions and the Riemann-Roch theorem on algebraic surfaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study canonical central extensions of the general linear group over the ring of adeles on a smooth projective algebraic surface $X$ by means of the group of integers. Via these central extensions and the adelic transition matrices of a rank $n$ locally free sheaf of $\mathcal{O}_X$-modules we obtain a local (adelic) decomposition for the difference of Euler characteristics of this sheaf and the sheaf $\mathcal{O}_X^n$. Two distinct calculations of this difference lead to the Riemann-Roch theorem on $X$ (without Noether's formula). Bibliography: 21 titles.

About the authors

Denis Vasilievich Osipov

Steklov Mathematical Institute of Russian Academy of Sciences; HSE University; National University of Science and Technology «MISIS»

Email: d_osipov@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. А. А. Бейлинсон, “Вычеты и адели”, Функц. анализ и его прил., 14:1 (1980), 44–45
  2. A. A. Beilinson, V. V. Schechtman, “Determinant bundles and Virasoro algebras”, Comm. Math. Phys., 118:4 (1988), 651–701
  3. J.-L. Brylinski, P. Deligne, “Central extensions of reductive groups by $mathrm K_2$”, Publ. Math. Inst. Hautes Etudes Sci., 94 (2001), 5–85
  4. B. L. Feigin, B. L. Tsygan, “Riemann–Roch theorem and Lie algebra cohomology. I”, Proceedings of the Winter school on geometry and physics (Srni, 1988), Rend. Circ. Mat. Palermo (2) Suppl., 21, Circ. Mat. Palermo, Palermo, 1989, 15–52
  5. A. Huber, “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273
  6. В. Г. Кац, Бесконечномерные алгебры Ли, Мир, М., 1993, 426 с.
  7. M. Kapranov, Semiinfinite symmetric powers
  8. D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164
  9. D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Internat. J. Math., 18:3 (2007), 269–279
  10. Д. В. Осипов, “Неразветвленное двумерное соответствие Ленглендса”, Изв. РАН. Cер. матем., 77:4 (2013), 73–102
  11. D. V. Osipov, “Second Chern numbers of vector bundles and higher adeles”, Bull. Korean Math. Soc., 54:5 (2017), 1699–1718
  12. Д. В. Осипов, А. Н. Паршин, “Гармонический анализ на локальных полях и пространствах аделей. I”, Изв. РАН. Сер. матем., 72:5 (2008), 77–140
  13. Д. В. Осипов, А. Н. Паршин, “Гармонический анализ и теорема Римана–Роха”, Докл. РАН, 441:4 (2011), 444–448
  14. А. Н. Паршин, “К арифметике двумерных схем. I. Распределения и вычеты”, Изв. АН СССР. Сер. матем., 40:4 (1976), 736–773
  15. A. N. Parshin, “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 1983:341 (1983), 174–192
  16. A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the international congress of mathematicians (Hyderabad, 2010), v. 1, Hindustan Book Agency, New Delhi, 2010, 362–392
  17. V. V. Schechtman, “Riemann–Roch theorem after D. Toledo and Y.-L. Tong”, Proceedings of the Winter School on Geometry and Physics, Srni, 1988, Rend. Circ. Mat. Palermo (2) Suppl., 21, Circ. Mat. Palermo, Palermo, 1989, 53–81
  18. Ж. Серр, Алгебраические группы и поля классов, Мир, М., 1968, 285 с.
  19. K. I. Tahara, “On the second cohomology groups of semidirect products”, Math. Z., 129 (1972), 365–379
  20. J. Tate, “Residues of differentials on curves”, Ann. Sci. Ecole Norm. Sup. (4), 1:1 (1968), 149–159
  21. A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by P. Sastry, Asterisque, 208, Soc. Math. France, Paris, 1992, 127 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Osipov D.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).