Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sphere and front of a flat sub-Riemannian structure on the Martinet distribution are surfaces with nonisolated singularities in three-dimensional space. The sphere is a subset of the front; it is not subanalytic at two antipodal points (the poles). The asymptotic behaviour of the sub-Riemannian sphere and Martinet front are calculated at these points: each surface is approximated by a pair of quasihomogeneous surfaces with distinct sets of weights in a neighbourhood of a pole. Bibliography: 13 titles.

About the authors

Ilya Aleksandrovich Bogaevsky

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Scientific Research Institute for System Analysis of the Russian Academy of Sciences; Ailamazyan Program Systems Institute of Russian Academy of Sciences

Email: bogaevsk@mccme.ru
Doctor of physico-mathematical sciences, no status

References

  1. A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448
  2. M. Gromov, “Carnot–Caratheodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323
  3. А. А. Аграчев, “Некоторые вопросы субримановой геометрии”, УМН, 71:6(432) (2016), 3–36
  4. B. Bonnard, M. Chyba, E. Trelat, “Sub-Riemannian geometry: one-parameter deformation of the Martinet flat case”, J. Dynam. Control Systems, 4:1 (1998), 59–76
  5. E. Trelat, “Non-subanalyticity of sub-Riemannian Martinet spheres”, C. R. Acad. Sci. Paris Ser. I Math., 332:6 (2001), 527–532
  6. Б. Боннар, Г. Лоне, Е. Трела, “Трансцендентность, необходимая для вычисления сферы и волнового фронта в субримановой геометрии Мартине”, Труды международной конференции, посвященной 90-летию со дня рождения Л. С. Понтрягина (Москва, 1998), т. 3, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 64, Геометрическая теория управления, ВИНИТИ, М., 1999, 82–117
  7. А. А. Ардентов, Ю. Л. Сачков, “Экстремальные траектории в нильпотентной субримановой задаче на группе Энгеля”, Матем. сб., 202:11 (2011), 31–54
  8. Ю. Л. Сачков, “Экспоненциальное отображение в обобщенной задаче Дидоны”, Матем. сб., 194:9 (2003), 63–90
  9. А. М. Вершик, В. Я. Гершкович, “Неголономные динамические системы. Геометрия распределений и вариационные задачи”, Динамические системы – 7, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 16, ВИНИТИ, М., 1987, 5–85
  10. A. A. Agrachev, “Exponential mappings for contact sub-Riemannian structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358
  11. I. Bogaevsky, “Fronts of control-affine systems in $mathbb{R}^3$”, J. Singul., 21 (2020), 15–29
  12. Г. Бэйтмен, А. Эрдейи, Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье, Наука, М., 1967, 299 с.
  13. А. М. Журавский, Справочник по эллиптическим функциям, Изд-во АН СССР, М.–Л., 1941, 235 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bogaevsky I.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).