Global extrema of the Delange function, bounds for digital sums and concave functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sums $S_q(N)$ are defined by the equality $S_q(N)=s_q(1)+…+s_q(N-1)$ for all positive integers $N$ and $q\ge2$, where $s_q(n)$ is the sum of digits of the integer $n$ written in the system with base $q$. In 1975 Delange generalised Trollope's formula and proved that $S_q(N)/N-({q-1})/2\cdot\log_qN=-1/2\cdot f_q(q^{\{\log_q N\}-1})$, where $f_q(x)=(q-1)\log_q x+D_q(x)/x$ and $D_q$ is the continuous nowhere differentiable Delange function. We find global extrema of $f_q$ and, using this, obtain a precise bound for the difference $S_q(N)/N-(q-1)/2\cdot\log_qN$. In the case $q=2$ this becomes the bound for binary sums proved by Krüppel in 2008 and also earlier by other authors. We also evaluate the global extrema of some other continuous nowhere differentiable functions. We introduce the natural concave hull of a function and prove a criterion simplifying the evaluation of this hull. Moreover, we introduce the notion of an extreme subargument of a function on a convex set. We show that all points of global maximum of the difference $f-g$, where the function $g$ is strictly concave and some additional conditions hold, are extreme subarguments for $f$. A similar result is obtained for functions of the form $v+f/w$. We evaluate the global extrema and find extreme subarguments of the Delange function on the interval $[0,1]$. The results in the paper are illustrated by graphs and tables. Bibliography: 16 titles.

About the authors

Oleg Evgenjevich Galkin

National Research University "Higher School of Economics", Nizhny Novgorod Branch

Email: olegegalkin@ya.ru
Candidate of physico-mathematical sciences, Associate professor

Svetlana Yur'evna Galkina

National Research University "Higher School of Economics", Nizhny Novgorod Branch

Email: galkin@mm.unn.ac.ru
Candidate of physico-mathematical sciences, Associate professor

References

  1. P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011), 1–54
  2. L. H. Y. Chen, Hsien-Kuei Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: a survey”, Probab. Surv., 11 (2014), 177–236
  3. H. Delange, “Sur la fonction sommatoire de la fonction “somme des chiffres””, Enseign. Math. (2), 21 (1975), 31–47
  4. О. Е. Галкин, С. Ю. Галкина, “О свойствах функций показательного класса Такаги”, Уфимск. матем. журн., 7:3 (2015), 29–38
  5. О. Е. Галкин, С. Ю. Галкина, “Глобальные экстремумы функции Кобаяши–Грея–Такаги и двоичные цифровые суммы”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 27:1 (2017), 17–25
  6. J. P. Kahane, “Sur l'exemple, donne par M. de Rham, d'une fonction continue sans derivee”, Enseign. Math. (2), 5 (1959), 53–57
  7. Y. Kamiya, T. Okada, T. Sekiguchi, Y. Shiota, “Power and exponential sums for generalized coding systems by a measure theoretic approach”, Theoret. Comput. Sci., 592 (2015), 23–38
  8. M. Krüppel, “Takagi's continuous nowhere differentiable function and binary digital sums”, Rostock. Math. Kolloq., 63 (2008), 37–54
  9. M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostock. Math. Kolloq., 64 (2009), 57–74
  10. J. C. Lagarias, “The Takagi function and its properties”, Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 153–189
  11. J. H. Lambert, “Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation des Zirculs suchen”, Beiträge zum Gebrauche der Mathematik und deren Anwendung, v. 2, Verlage des Buchladens der Realschule, Berlin, 1770, 140–169
  12. Б. Мартынов, “О максимумах функции Ван-дер-Вардена”, Квант, 1982, № 6, 8–14
  13. K. Muramoto, T. Okada, T. Sekiguchi, Y. Shiota, “Digital sum problems for the $p$-adic expansion of natural numbers”, Interdiscip. Inform. Sci., 6:2 (2000), 105–109
  14. Е. С. Половинкин, М. В. Балашов, Элементы выпуклого и сильно выпуклого анализа, 2-е изд., Физматлит, М., 2007, 438 с.
  15. T. Takagi, “A simple example of the continuous function without derivative”, Phys.-Math. Soc. Japan, 1 (1903), 176–177
  16. J. R. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Galkin O.E., Galkina S.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).