Global extrema of the Delange function, bounds for digital sums and concave functions
- Authors: Galkin O.E.1, Galkina S.Y.1
- 
							Affiliations: 
							- National Research University "Higher School of Economics", Nizhny Novgorod Branch
 
- Issue: Vol 211, No 3 (2020)
- Pages: 32-70
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133315
- DOI: https://doi.org/10.4213/sm9143
- ID: 133315
Cite item
Abstract
About the authors
Oleg Evgenjevich Galkin
National Research University "Higher School of Economics", Nizhny Novgorod Branch
														Email: olegegalkin@ya.ru
				                					                																			                								Candidate of physico-mathematical sciences, Associate professor				                														
Svetlana Yur'evna Galkina
National Research University "Higher School of Economics", Nizhny Novgorod Branch
														Email: galkin@mm.unn.ac.ru
				                					                																			                								Candidate of physico-mathematical sciences, Associate professor				                														
References
- P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011), 1–54
- L. H. Y. Chen, Hsien-Kuei Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: a survey”, Probab. Surv., 11 (2014), 177–236
- H. Delange, “Sur la fonction sommatoire de la fonction “somme des chiffres””, Enseign. Math. (2), 21 (1975), 31–47
- О. Е. Галкин, С. Ю. Галкина, “О свойствах функций показательного класса Такаги”, Уфимск. матем. журн., 7:3 (2015), 29–38
- О. Е. Галкин, С. Ю. Галкина, “Глобальные экстремумы функции Кобаяши–Грея–Такаги и двоичные цифровые суммы”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 27:1 (2017), 17–25
- J. P. Kahane, “Sur l'exemple, donne par M. de Rham, d'une fonction continue sans derivee”, Enseign. Math. (2), 5 (1959), 53–57
- Y. Kamiya, T. Okada, T. Sekiguchi, Y. Shiota, “Power and exponential sums for generalized coding systems by a measure theoretic approach”, Theoret. Comput. Sci., 592 (2015), 23–38
- M. Krüppel, “Takagi's continuous nowhere differentiable function and binary digital sums”, Rostock. Math. Kolloq., 63 (2008), 37–54
- M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostock. Math. Kolloq., 64 (2009), 57–74
- J. C. Lagarias, “The Takagi function and its properties”, Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 153–189
- J. H. Lambert, “Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation des Zirculs suchen”, Beiträge zum Gebrauche der Mathematik und deren Anwendung, v. 2, Verlage des Buchladens der Realschule, Berlin, 1770, 140–169
- Б. Мартынов, “О максимумах функции Ван-дер-Вардена”, Квант, 1982, № 6, 8–14
- K. Muramoto, T. Okada, T. Sekiguchi, Y. Shiota, “Digital sum problems for the $p$-adic expansion of natural numbers”, Interdiscip. Inform. Sci., 6:2 (2000), 105–109
- Е. С. Половинкин, М. В. Балашов, Элементы выпуклого и сильно выпуклого анализа, 2-е изд., Физматлит, М., 2007, 438 с.
- T. Takagi, “A simple example of the continuous function without derivative”, Phys.-Math. Soc. Japan, 1 (1903), 176–177
- J. R. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					