On equivariant fibrations of $G$-CW-complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is proved that if $G$ is a compact Lie group, then an equivariant Serre fibration of $G$-CW-complexes is an equivariant Hurewicz fibration in the class of compactly generated $G$-spaces. In the nonequivariant setting, this result is due to Steinberger, West and Cauty. The main theorem is proved using the following key result: a $G$-CW-complex can be embedded as an equivariant retract in a simplicial $G$-complex. It is also proved that an equivariant map $p\colon E\to B$ of $G$-CW-complexes is a Hurewicz $G$-fibration if and only if the $H$-fixed point map $p^H\colon E^H \to B^H$ is a Hurewicz fibration for any closed subgroup $H$ of $G$. This gives a solution to the problem of James and Segal in the case of $G$-CW-complexes. Bibliography: 9 titles.

About the authors

Pavel Samvelovich Gevorgyan

Moscow State Pedagogical University

Email: pgev@yandex.ru
Doctor of physico-mathematical sciences, Professor

Rolando Benitez Jimenez

National Autonomous University of Mexico, Institute of Mathematics

Candidate of physico-mathematical sciences

References

  1. M. Steinberger, J. West, “Covering homotopy properties of maps between C.W. complexes or ANR's”, Proc. Amer. Math. Soc., 92:4 (1984), 573–577
  2. R. Cauty, “Sur les ouverts des CW-complexes et les fibres de Serre”, Colloq. Math., 63:1 (1992), 1–7
  3. J. P. May, J. Sigurdsson, Parametrized homotopy theory, Math. Surveys Monogr., 132, Amer. Math. Soc., Providence, RI, 2006, x+441 pp.
  4. I. M. James, G. B. Segal, “On equivariant homotopy type”, Topology, 17:3 (1978), 267–272
  5. G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer-Verlag, Berlin–New York, 1967, vi+64 pp. (not consecutively paged)
  6. S. Illman, “The equivariant triangulation theorem for actions of compact Lie groups”, Math. Ann., 262:4 (1983), 487–501
  7. R. Cauty, “Sur les sous-espaces des complexes simpliciaux”, Bull. Soc. Math. France, 100 (1972), 129–155
  8. T. tom Dieck, Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter & Co., Berlin, 1987, x+312 pp.
  9. W. Lück, Transformation groups and algebraic $K$-theory, Lecture Notes in Math., 1408, Springer-Verlag, Berlin, 1989, xii+443 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Gevorgyan P.S., Jimenez R.B.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).