Study of the physical properties of piezoelectric polyvinylidene fluoride – lead zirconate-titanate
- 作者: Savin V.V.1,2, Keruchenko M.A.1,2,3, Ershov P.A.1, Vorontsov P.A.1, Ignatov A.A.1, Rodionova V.V.1
-
隶属关系:
- Immanuel Kant Baltic Federal University
- Center for Development of Gifted Children
- Lyceum No. 23, Kaliningrad
- 期: 卷 88, 编号 4 (2024)
- 页面: 668-672
- 栏目: Magnetic Phenomena and Smart Composite Materials
- URL: https://journals.rcsi.science/0367-6765/article/view/271463
- DOI: https://doi.org/10.31857/S0367676524040209
- EDN: https://elibrary.ru/QGRTVM
- ID: 271463
如何引用文章
详细
We examined the impact of the percentage of lead zirconate-titanate microparticles as a filler in a polyvinylidene fluoride-based composite material on its mechanical, piezoelectric, and structural properties. Our findings revealed that the incorporation of 10% lead zirconate titanate particles resulted in an enhanced piezoelectric response due to a significant increase in the degree of polymer crystallinity for this concentration on the condition of conservation of the ultimate stresses value of the material in the acceptable range for the implementation of mechanical stress sensors.
作者简介
V. Savin
Immanuel Kant Baltic Federal University; Center for Development of Gifted Children
编辑信件的主要联系方式.
Email: savin_vv@bk.ru
俄罗斯联邦, Kaliningrad, 236041; Ushakovo, 238322
M. Keruchenko
Immanuel Kant Baltic Federal University; Center for Development of Gifted Children; Lyceum No. 23, Kaliningrad
Email: savin_vv@bk.ru
俄罗斯联邦, Kaliningrad, 236041; Ushakovo, 238322; Kaliningrad, 236000
P. Ershov
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
俄罗斯联邦, Kaliningrad, 236041
P. Vorontsov
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
俄罗斯联邦, Kaliningrad, 236041
A. Ignatov
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
俄罗斯联邦, Kaliningrad, 236041
V. Rodionova
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
俄罗斯联邦, Kaliningrad, 236041
参考
- Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 5. No. 11. P. 1154.
- Xia W., Zhang Z. // IET Nanodielectr. 2018. V. 1. No. 1. P. 17.
- Du X., Zhou Z., Zhang Z. et al. // J. Adv. Ceram. 2022. V. 11. No. 2. P. 331.
- Pei J., Zhao Z., Li X. et al. // Mater. Exp. 2017. No. 3 (7). P. 180.
- Yuan C.X., Zhang C., Xiao et al. // Ceram. Int. 2023. V. 49. No. 17A. P. 28474.
- Asghar A.H., Qaseem A., Alam W., Akhtar M. // Proc. IBCAST 2022. (Murree Hills, 2022). P. 1.
- Li S., Bhalla A., Newnham R. Cross L. // Mater. Lett. 1993. V. 1–2. No. 17. P. 21.
- Sobolev K., Kolesnikova V., Omelyanchik A. et al. // Polymers. 2022. V. 14. P. 4807.
- Maccone P., Brinati G., Arcella V. // Polymer Eng. Sci. 2000. V. 40. No. 3. P. 761.
- Zhang Y., Xue D., Wu H. et al. // Acta Mater. 2014. V. 71. P. 176.
- Janakiraman S., Surendran A., Ghosh S. et al. // Solid State Ion. 2016. V. 292. No. 9. P. 130.
补充文件
