Study of the physical properties of piezoelectric polyvinylidene fluoride – lead zirconate-titanate
- Autores: Savin V.V.1,2, Keruchenko M.A.1,2,3, Ershov P.A.1, Vorontsov P.A.1, Ignatov A.A.1, Rodionova V.V.1
-
Afiliações:
- Immanuel Kant Baltic Federal University
- Center for Development of Gifted Children
- Lyceum No. 23, Kaliningrad
- Edição: Volume 88, Nº 4 (2024)
- Páginas: 668-672
- Seção: Magnetic Phenomena and Smart Composite Materials
- URL: https://journals.rcsi.science/0367-6765/article/view/271463
- DOI: https://doi.org/10.31857/S0367676524040209
- EDN: https://elibrary.ru/QGRTVM
- ID: 271463
Citar
Resumo
We examined the impact of the percentage of lead zirconate-titanate microparticles as a filler in a polyvinylidene fluoride-based composite material on its mechanical, piezoelectric, and structural properties. Our findings revealed that the incorporation of 10% lead zirconate titanate particles resulted in an enhanced piezoelectric response due to a significant increase in the degree of polymer crystallinity for this concentration on the condition of conservation of the ultimate stresses value of the material in the acceptable range for the implementation of mechanical stress sensors.
Sobre autores
V. Savin
Immanuel Kant Baltic Federal University; Center for Development of Gifted Children
Autor responsável pela correspondência
Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041; Ushakovo, 238322
M. Keruchenko
Immanuel Kant Baltic Federal University; Center for Development of Gifted Children; Lyceum No. 23, Kaliningrad
Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041; Ushakovo, 238322; Kaliningrad, 236000
P. Ershov
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041
P. Vorontsov
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041
A. Ignatov
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041
V. Rodionova
Immanuel Kant Baltic Federal University
Email: savin_vv@bk.ru
Rússia, Kaliningrad, 236041
Bibliografia
- Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 5. No. 11. P. 1154.
- Xia W., Zhang Z. // IET Nanodielectr. 2018. V. 1. No. 1. P. 17.
- Du X., Zhou Z., Zhang Z. et al. // J. Adv. Ceram. 2022. V. 11. No. 2. P. 331.
- Pei J., Zhao Z., Li X. et al. // Mater. Exp. 2017. No. 3 (7). P. 180.
- Yuan C.X., Zhang C., Xiao et al. // Ceram. Int. 2023. V. 49. No. 17A. P. 28474.
- Asghar A.H., Qaseem A., Alam W., Akhtar M. // Proc. IBCAST 2022. (Murree Hills, 2022). P. 1.
- Li S., Bhalla A., Newnham R. Cross L. // Mater. Lett. 1993. V. 1–2. No. 17. P. 21.
- Sobolev K., Kolesnikova V., Omelyanchik A. et al. // Polymers. 2022. V. 14. P. 4807.
- Maccone P., Brinati G., Arcella V. // Polymer Eng. Sci. 2000. V. 40. No. 3. P. 761.
- Zhang Y., Xue D., Wu H. et al. // Acta Mater. 2014. V. 71. P. 176.
- Janakiraman S., Surendran A., Ghosh S. et al. // Solid State Ion. 2016. V. 292. No. 9. P. 130.
Arquivos suplementares
