Evolution of the structure of shells of hollow submicron SiO2 particles during heat treatment

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Hollow SiO2 particles of submicron size were synthesized and changes in the structures and morphology of their shells during heat treatment were investigated. The dependences of the shrinkage of silica shells on the annealing temperature of the particles were studied. It has been found that after annealing at 600°C, shells of hollow particles become non-porous and impermeable to liquid media.

作者简介

N. Sukhinina

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

V. Masalov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

I. Khodos

Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

A. Zhokhov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

G. Emel’chenko

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

参考

  1. Hu J., Chen M., Fang X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 5472.
  2. Bao Y., Shi C., Wang T. et al. // Micropor. Mesopor. Mater. 2016. V. 227. P. 121.
  3. Sharma J., Polizos G. // Nanomaterials. 2020. V. 10. No. 8. P. 1599.
  4. Spence D., Cullen D.A., Polizos G. et al. // Nanomaterials. 2021. V. 11. P. 1627.
  5. Sharma J., Polizos G., Jafta C.J. et al. // RSC Advances. 2022. V. 12. P. 15373.
  6. Nguyen-Thi N.-T., Pham Tran L.P., Le N.T.T. et al. // Process. 2019. V. 7. No. 11. P. 805.
  7. Nguyen N.H., Tran D.L., Truong-Thi N.-H. et al. // J. Appl. Polym. Sci. 2022. V. 139. No. 45. Art. No. e53126.
  8. Fuji M., Iida T., Takai C. et al. // J. Soc. Powder Technol. Japan. 2019. V. 56. P. 505.
  9. Liu X., Chen Y., Liu H. et al. // J. Mater. Sci. Tech. 2017. V. 33. No. 3. P. 239.
  10. Cao X., Chuan X., Li Sh. et al. // Part. Part. Syst. Charact. 2016. V. 33. P. 110.
  11. Cao S., Zhao Z., Jin X. et al. // J. Mater. Chem. 2011. V. 21. P. 19124.
  12. Yamada Y., Mizutani M., Nakamura T. et al. // Chem. Mater. 2010 V. 22. P. 1695.
  13. Castillo S.I.R., Ouhajji S., Fokker S. et al. // Micropor. Mesopor. Mater. 2014. V. 195. P. 75.
  14. Liu H., Li H., Ding Z. et al. // J. Cluster Sci. 2012. V. 23. P. 273.
  15. Huang Z.F., Qu X.Y., Chen Zh. // J. Appl. Polym. Sci. 2015. V. 132. No. 19. Art. No. 41919.
  16. Ernawati L., Ogi T., Balgis R. et al. // Langmuir. 2016. V. 32. P. 338.
  17. Meng Q., Xiang S., Zhang K. et al. // J. Colloid Interface Sci. 2012. V. 384. No. 1. P. 22.
  18. Sun G., Chen Zh., Wang Sh. et al. // Colloid Polym. Sci. 2011. V. 289. P. 1397.
  19. Chu L., Zhang X., Niu W. et al. // J. Mater. Chem. C. 2019. V. 7. P. 7411.
  20. Yu Sh.-Zh., Niu W.-B., Wu S.-L. et al. // J. Mater. Chem. C. 2018. V. 6. P. 12814.
  21. Arai Y., Matsubara T., Kim H. et al. // AGC Research Report. 2021. V. 71. P. 7.
  22. Wang J., Xiao W., Wang J. et al. // Materials Lett. 2015. V. 142. P. 269.
  23. Winkelmann F., Albert R., Felderhoff M. // Energy Technol. 2021. V. 9. Art. No. 2001048.
  24. Landon P.B., Mo A.H., Zhang. C. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 9937.
  25. Liu N., Zhao S., Yang Z. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. No. 50. P. 47008.
  26. Nuasaen S., Tangboriboonrat P. // Prog. Org. Coat. 2015. V. 79. P. 83.
  27. Rennel C., Rigdahl M. // Colloid Polym. Sci. 1994. V. 272. P. 1111.
  28. McDonald C.J., Devon M.J. // Adv. Colloid Interface. 2002. V. 99. P. 181.
  29. Масалов В.М., Сухинина Н.С., Ходос И.И. и др. // Поверхн. Рентген., синхротрон., нейтрон. иссл. 2021. № 11. С. 68; Masalov V.M., Sukhinina N.S., Khodos I.I. et al. // J. Surf. Invest. X-Ray, Synchrotron Neutron Tech. 2021. V. 15. No. 6. P. 1174.
  30. Sukhinina N.S., Masalov V.M., Fursova T.N. et al. // Crystals. 2022. V. 12. No. 7. Art. No. 883.
  31. Масалов В.М., Сухинина Н.С., Емельченко Г.А. // ФТТ. 2011. Т. 53. № 6. С. 1072; Masalov V.M., Sukhinina N.S., Emel’chenko G.A. // Phys. Solid State. 2011. V. 53. No. 6. P. 1135.
  32. Masalov V.M., Sukhinina N.S., Kudrenko E.A. et al. // Nanotechnology. 2011. V. 22. No. 27. Art. No. 275718.
  33. Самаров Э.Н., Мокрушин А.Д., Масалов В.М. и др. // ФТТ. 2006. Т. 48. № 7. С. 1212; Samarov É.N., Mokrushin A.D., Masalov V.M. et al. // Phys. Solid State. 2006. V. 48. No. 7. P. 1280.
  34. García-Santamaría F., Míguez H., Ibisate M. et al. // Langmuir. 2002. V. 18. P. 1942.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (65KB)
4.

下载 (55KB)

版权所有 © Н.С. Сухинина, В.М. Масалов, И.И. Ходос, А.А. Жохов, Г.А. Емельченко, 2023

##common.cookie##