Evolution of the structure of shells of hollow submicron SiO2 particles during heat treatment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Hollow SiO2 particles of submicron size were synthesized and changes in the structures and morphology of their shells during heat treatment were investigated. The dependences of the shrinkage of silica shells on the annealing temperature of the particles were studied. It has been found that after annealing at 600°C, shells of hollow particles become non-porous and impermeable to liquid media.

Sobre autores

N. Sukhinina

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

V. Masalov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

I. Khodos

Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

A. Zhokhov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

G. Emel’chenko

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: suhinina@issp.ac.ru
Russia, 142432, Chernogolovka

Bibliografia

  1. Hu J., Chen M., Fang X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 5472.
  2. Bao Y., Shi C., Wang T. et al. // Micropor. Mesopor. Mater. 2016. V. 227. P. 121.
  3. Sharma J., Polizos G. // Nanomaterials. 2020. V. 10. No. 8. P. 1599.
  4. Spence D., Cullen D.A., Polizos G. et al. // Nanomaterials. 2021. V. 11. P. 1627.
  5. Sharma J., Polizos G., Jafta C.J. et al. // RSC Advances. 2022. V. 12. P. 15373.
  6. Nguyen-Thi N.-T., Pham Tran L.P., Le N.T.T. et al. // Process. 2019. V. 7. No. 11. P. 805.
  7. Nguyen N.H., Tran D.L., Truong-Thi N.-H. et al. // J. Appl. Polym. Sci. 2022. V. 139. No. 45. Art. No. e53126.
  8. Fuji M., Iida T., Takai C. et al. // J. Soc. Powder Technol. Japan. 2019. V. 56. P. 505.
  9. Liu X., Chen Y., Liu H. et al. // J. Mater. Sci. Tech. 2017. V. 33. No. 3. P. 239.
  10. Cao X., Chuan X., Li Sh. et al. // Part. Part. Syst. Charact. 2016. V. 33. P. 110.
  11. Cao S., Zhao Z., Jin X. et al. // J. Mater. Chem. 2011. V. 21. P. 19124.
  12. Yamada Y., Mizutani M., Nakamura T. et al. // Chem. Mater. 2010 V. 22. P. 1695.
  13. Castillo S.I.R., Ouhajji S., Fokker S. et al. // Micropor. Mesopor. Mater. 2014. V. 195. P. 75.
  14. Liu H., Li H., Ding Z. et al. // J. Cluster Sci. 2012. V. 23. P. 273.
  15. Huang Z.F., Qu X.Y., Chen Zh. // J. Appl. Polym. Sci. 2015. V. 132. No. 19. Art. No. 41919.
  16. Ernawati L., Ogi T., Balgis R. et al. // Langmuir. 2016. V. 32. P. 338.
  17. Meng Q., Xiang S., Zhang K. et al. // J. Colloid Interface Sci. 2012. V. 384. No. 1. P. 22.
  18. Sun G., Chen Zh., Wang Sh. et al. // Colloid Polym. Sci. 2011. V. 289. P. 1397.
  19. Chu L., Zhang X., Niu W. et al. // J. Mater. Chem. C. 2019. V. 7. P. 7411.
  20. Yu Sh.-Zh., Niu W.-B., Wu S.-L. et al. // J. Mater. Chem. C. 2018. V. 6. P. 12814.
  21. Arai Y., Matsubara T., Kim H. et al. // AGC Research Report. 2021. V. 71. P. 7.
  22. Wang J., Xiao W., Wang J. et al. // Materials Lett. 2015. V. 142. P. 269.
  23. Winkelmann F., Albert R., Felderhoff M. // Energy Technol. 2021. V. 9. Art. No. 2001048.
  24. Landon P.B., Mo A.H., Zhang. C. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 9937.
  25. Liu N., Zhao S., Yang Z. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. No. 50. P. 47008.
  26. Nuasaen S., Tangboriboonrat P. // Prog. Org. Coat. 2015. V. 79. P. 83.
  27. Rennel C., Rigdahl M. // Colloid Polym. Sci. 1994. V. 272. P. 1111.
  28. McDonald C.J., Devon M.J. // Adv. Colloid Interface. 2002. V. 99. P. 181.
  29. Масалов В.М., Сухинина Н.С., Ходос И.И. и др. // Поверхн. Рентген., синхротрон., нейтрон. иссл. 2021. № 11. С. 68; Masalov V.M., Sukhinina N.S., Khodos I.I. et al. // J. Surf. Invest. X-Ray, Synchrotron Neutron Tech. 2021. V. 15. No. 6. P. 1174.
  30. Sukhinina N.S., Masalov V.M., Fursova T.N. et al. // Crystals. 2022. V. 12. No. 7. Art. No. 883.
  31. Масалов В.М., Сухинина Н.С., Емельченко Г.А. // ФТТ. 2011. Т. 53. № 6. С. 1072; Masalov V.M., Sukhinina N.S., Emel’chenko G.A. // Phys. Solid State. 2011. V. 53. No. 6. P. 1135.
  32. Masalov V.M., Sukhinina N.S., Kudrenko E.A. et al. // Nanotechnology. 2011. V. 22. No. 27. Art. No. 275718.
  33. Самаров Э.Н., Мокрушин А.Д., Масалов В.М. и др. // ФТТ. 2006. Т. 48. № 7. С. 1212; Samarov É.N., Mokrushin A.D., Masalov V.M. et al. // Phys. Solid State. 2006. V. 48. No. 7. P. 1280.
  34. García-Santamaría F., Míguez H., Ibisate M. et al. // Langmuir. 2002. V. 18. P. 1942.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (65KB)
4.

Baixar (55KB)

Declaração de direitos autorais © Н.С. Сухинина, В.М. Масалов, И.И. Ходос, А.А. Жохов, Г.А. Емельченко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies