Growth and electron transport characteristics of epitaxial thin strontium iridate films

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of a study of epitaxial thin films of strontium iridate with the compositions Sr2IrO4 and SrIrO3 obtained by laser ablation and direct current cathode sputtering, respectively, are presented. Data on the growth technology, crystal structure, electrophysical parameters are given, and the activation energy for low-defect dielectric Sr2IrO4 films is calculated.

Sobre autores

I. Moskal

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; MIREA – Russian Technological University

Autor responsável pela correspondência
Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow; Russia, 107996, Moscow

K. Nagornykh

Moscow Institute of Physics and Technology

Email: ivan.moscal@yandex.ru
Russia, 141701, Dolgoprudny

A. Petrzhik

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

Yu. Kislinsky

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

K. Konstantinyan

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

A. Shadrin

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow; Russia, 141701, Dolgoprudny

G. Ovsyannikov

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

Bibliografia

  1. Kazunori Nishio, Harold Y. Hwang // APL Mater. 2016. V. 4. Art. No. 036102.
  2. Gutierrez-Llorente A., Iglesias L., Rodr’ıguez-González B., Rivadulla F. // APL Mater. 2018. V. 6. Art. No. 091101.
  3. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 024501.
  4. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // J. Surf. Invest. X-Ray Synchrotron Neutron Techn. 2020. V. 14. No. 3. P. 547.
  5. Bobkova I.V., Bobkov A.M. // Phys. Rev. 2017. V. 95. P. 184 512.
  6. Kislinskii Yu.V., Constantinian K.Y., Ovsyannikov G.A. et al. // Proc. V Int. Conf. FPS’15. (Moscow, 2015). P. 144.
  7. Yang J., Hao L., Nanney P. et al. // Appl. Phys. Lett. 2019. V. 114. Art. No. 182401.
  8. Li Z.Z., Schneegans O., Fruchter L. // arXiv: 1610.03722v1. 2016.
  9. Петржик А.М., Cristiani G., Логвенов Г. и др. // Письма в ЖТФ. 2017. Т. 43. № 12. С. 25; Petrzhik A.M., Cristiani G., Logvenov G. et al. // Tech. Phys. Lett. 2017. V. 43. No. 6. P. 554.
  10. Nittaya Keawprak, Rong Tu, Takashi Goto // J. Alloys Compounds. 2010. V. 491. P. 441.
  11. Zhang L., Liang Q., Xiong Y. et al. // Phys. Rev. B. 2015. V. 91. P. 035110.
  12. Bebenin N.G., Zainullina R.I., Chusheva N.S. et al. // Phys. Rev. B. 2004. V. 69. P. 104434.
  13. Шкловский Б.И., Эфрос А.Л. Электронные свойства легированных полупроводников. М.: Наука. Физматлит, 1979. 416 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (289KB)
3.

Baixar (108KB)
4.

Baixar (72KB)

Declaração de direitos autorais © И.Е. Москаль, К.Е. Нагорных, А.М. Петржик, Ю.В. Кислинский, К.И. Константинян, А.В. Шадрин, Г.А. Овсянников, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies