Growth and electron transport characteristics of epitaxial thin strontium iridate films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a study of epitaxial thin films of strontium iridate with the compositions Sr2IrO4 and SrIrO3 obtained by laser ablation and direct current cathode sputtering, respectively, are presented. Data on the growth technology, crystal structure, electrophysical parameters are given, and the activation energy for low-defect dielectric Sr2IrO4 films is calculated.

About the authors

I. E. Moskal

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; MIREA – Russian Technological University

Author for correspondence.
Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow; Russia, 107996, Moscow

K. E. Nagornykh

Moscow Institute of Physics and Technology

Email: ivan.moscal@yandex.ru
Russia, 141701, Dolgoprudny

A. M. Petrzhik

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

Yu. V. Kislinsky

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

K. I. Konstantinyan

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

A. V. Shadrin

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow; Russia, 141701, Dolgoprudny

G. A. Ovsyannikov

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russia, 125009, Moscow

References

  1. Kazunori Nishio, Harold Y. Hwang // APL Mater. 2016. V. 4. Art. No. 036102.
  2. Gutierrez-Llorente A., Iglesias L., Rodr’ıguez-González B., Rivadulla F. // APL Mater. 2018. V. 6. Art. No. 091101.
  3. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 024501.
  4. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // J. Surf. Invest. X-Ray Synchrotron Neutron Techn. 2020. V. 14. No. 3. P. 547.
  5. Bobkova I.V., Bobkov A.M. // Phys. Rev. 2017. V. 95. P. 184 512.
  6. Kislinskii Yu.V., Constantinian K.Y., Ovsyannikov G.A. et al. // Proc. V Int. Conf. FPS’15. (Moscow, 2015). P. 144.
  7. Yang J., Hao L., Nanney P. et al. // Appl. Phys. Lett. 2019. V. 114. Art. No. 182401.
  8. Li Z.Z., Schneegans O., Fruchter L. // arXiv: 1610.03722v1. 2016.
  9. Петржик А.М., Cristiani G., Логвенов Г. и др. // Письма в ЖТФ. 2017. Т. 43. № 12. С. 25; Petrzhik A.M., Cristiani G., Logvenov G. et al. // Tech. Phys. Lett. 2017. V. 43. No. 6. P. 554.
  10. Nittaya Keawprak, Rong Tu, Takashi Goto // J. Alloys Compounds. 2010. V. 491. P. 441.
  11. Zhang L., Liang Q., Xiong Y. et al. // Phys. Rev. B. 2015. V. 91. P. 035110.
  12. Bebenin N.G., Zainullina R.I., Chusheva N.S. et al. // Phys. Rev. B. 2004. V. 69. P. 104434.
  13. Шкловский Б.И., Эфрос А.Л. Электронные свойства легированных полупроводников. М.: Наука. Физматлит, 1979. 416 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (289KB)
3.

Download (108KB)
4.

Download (72KB)

Copyright (c) 2023 И.Е. Москаль, К.Е. Нагорных, А.М. Петржик, Ю.В. Кислинский, К.И. Константинян, А.В. Шадрин, Г.А. Овсянников

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies