Capabilities of optothermal traps for space ordering of microscopic objects
- Авторлар: Mayorova А.M.1, Kotova S.P.1, Losevsky N.N.1, Prokopova D.V.1, Samagin S.A.1
-
Мекемелер:
- Lebedev Physical Institute of the Russian Academy of Sciences
- Шығарылым: Том 88, № 12 (2024)
- Беттер: 1844-1850
- Бөлім: Nanooptics, photonics and coherent spectroscopy
- URL: https://journals.rcsi.science/0367-6765/article/view/286460
- DOI: https://doi.org/10.31857/S0367676524120017
- EDN: https://elibrary.ru/EYGRLX
- ID: 286460
Дәйексөз келтіру
Аннотация
Experimental results on the formation of ordered structures of latex microparticles with diameters of 3 and 5 micrometers using arrays of point optothermal traps are presented. To implement these traps, the working area of the phase mask was divided into sub-elements, for each of which a specific distribution of phase delay of the prism (wedge) was specified.
Негізгі сөздер
Толық мәтін

Авторлар туралы
А. Mayorova
Lebedev Physical Institute of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Ресей, SamaraS. Kotova
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Ресей, SamaraN. Losevsky
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Ресей, SamaraD. Prokopova
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Ресей, SamaraS. Samagin
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Ресей, SamaraӘдебиет тізімі
- Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
- Jing P., Liu Y., Keeler E.G. et al. // Biomed. Opt. Express. 2018. V. 9. P. 771.
- Li P., Yu H., Wang X. et al. // Opt. Express. 2021. V. 29. P. 11144.
- Lu F., Gong L., Kuai Y. et al. // Photon. Res. 2022. V. 10. P. 14.
- Guex A.G., Di Marzio N., Eglin D. et al. // Mater. Today Bio. 2021. V. 10. Art. No. 100110.
- Yoo J., Kim J., Lee J., Kim H.H. // iScience. 2023. V. 26. No. 11. Art. No. 108178.
- Минаев Н.В., Юсупов В.И., Чурбанова Е.С. и др. // Прибор. и техн. экспер. 2019. № 1. С. 153.
- Юсупов В.И., Жигарьков В.С., Чурбанова Е.С. и др. // Квант. электрон. 2017. Т. 47. № 12. С. 1158.
- Zhang D., Ren Y., Barbot A. et al. // Matter. 2022. V. 5. No. 10. P. 3135.
- Song Y., Yin J., Huang W., et al. // Trends Analyt. Chem. 2023. Art. No. 117444.
- Rodrigo J.A., Martínez-Matos Ó., Alieva T. // Photon. Res. 2022. V. 10. P. 2560.
- Afanasiev K., Korobtsov A., Kotova S. et al. // J. Phys. Conf. Ser. 2013. V. 414. Art. No. 012017.
- Rubinsztein-Dunlop H., Forbes A., Berry M. et al. // J. Optics. 2017. V. 19. Art. No. 013001.
- Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1685, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1434.
- Kotova S.P., Коrobtsov A.V., Losevsky N.N. et al. // J. Quant. Spectrosc. Radiat. 2021. V. 268. Art. No. 107641.
- Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1682, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1767.
- Прокопова Д.В., Котова С.П., Самагин С.А. // Изв. РАН. Сер. Физ. 2021. Т. 85. № 8. С. 1205, Prokopova D.V., Kotova S.P., Samagin S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 928.
- Zemánek P., Volpe G., Jonáš A., Brzobohatý O. // Adv. Opt. Photon. 2019. V. 11. No. 3. P. 577.
- Zenteno-Hernandez J.A., Lozano J.V., Sarabia-Alonso J.A. et al. // Opt. Lett. 2020. V. 45. P. 3961.
- Hosokawa Ch., Tsuji T., Kishimoto T. et al. // J. Phys. Chem. C. 2020. V. 124. P. 8323.
- Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
- Kollipara P., Chen Z., Zheng Y. // ACS Nano. 2023. V. 17. P. 7051.
- Chen Z., Li J., Zheng Y. // Chem. Rev. 2021. V. 122. P. 3122.
Қосымша файлдар
