Capabilities of optothermal traps for space ordering of microscopic objects
- Authors: Mayorova А.M.1, Kotova S.P.1, Losevsky N.N.1, Prokopova D.V.1, Samagin S.A.1
-
Affiliations:
- Lebedev Physical Institute of the Russian Academy of Sciences
- Issue: Vol 88, No 12 (2024)
- Pages: 1844-1850
- Section: Nanooptics, photonics and coherent spectroscopy
- URL: https://journals.rcsi.science/0367-6765/article/view/286460
- DOI: https://doi.org/10.31857/S0367676524120017
- EDN: https://elibrary.ru/EYGRLX
- ID: 286460
Cite item
Abstract
Experimental results on the formation of ordered structures of latex microparticles with diameters of 3 and 5 micrometers using arrays of point optothermal traps are presented. To implement these traps, the working area of the phase mask was divided into sub-elements, for each of which a specific distribution of phase delay of the prism (wedge) was specified.
Full Text

About the authors
А. M. Mayorova
Lebedev Physical Institute of the Russian Academy of Sciences
Author for correspondence.
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Russian Federation, SamaraS. P. Kotova
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Russian Federation, SamaraN. N. Losevsky
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Russian Federation, SamaraD. V. Prokopova
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Russian Federation, SamaraS. A. Samagin
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
Russian Federation, SamaraReferences
- Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
- Jing P., Liu Y., Keeler E.G. et al. // Biomed. Opt. Express. 2018. V. 9. P. 771.
- Li P., Yu H., Wang X. et al. // Opt. Express. 2021. V. 29. P. 11144.
- Lu F., Gong L., Kuai Y. et al. // Photon. Res. 2022. V. 10. P. 14.
- Guex A.G., Di Marzio N., Eglin D. et al. // Mater. Today Bio. 2021. V. 10. Art. No. 100110.
- Yoo J., Kim J., Lee J., Kim H.H. // iScience. 2023. V. 26. No. 11. Art. No. 108178.
- Минаев Н.В., Юсупов В.И., Чурбанова Е.С. и др. // Прибор. и техн. экспер. 2019. № 1. С. 153.
- Юсупов В.И., Жигарьков В.С., Чурбанова Е.С. и др. // Квант. электрон. 2017. Т. 47. № 12. С. 1158.
- Zhang D., Ren Y., Barbot A. et al. // Matter. 2022. V. 5. No. 10. P. 3135.
- Song Y., Yin J., Huang W., et al. // Trends Analyt. Chem. 2023. Art. No. 117444.
- Rodrigo J.A., Martínez-Matos Ó., Alieva T. // Photon. Res. 2022. V. 10. P. 2560.
- Afanasiev K., Korobtsov A., Kotova S. et al. // J. Phys. Conf. Ser. 2013. V. 414. Art. No. 012017.
- Rubinsztein-Dunlop H., Forbes A., Berry M. et al. // J. Optics. 2017. V. 19. Art. No. 013001.
- Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1685, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1434.
- Kotova S.P., Коrobtsov A.V., Losevsky N.N. et al. // J. Quant. Spectrosc. Radiat. 2021. V. 268. Art. No. 107641.
- Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1682, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1767.
- Прокопова Д.В., Котова С.П., Самагин С.А. // Изв. РАН. Сер. Физ. 2021. Т. 85. № 8. С. 1205, Prokopova D.V., Kotova S.P., Samagin S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 928.
- Zemánek P., Volpe G., Jonáš A., Brzobohatý O. // Adv. Opt. Photon. 2019. V. 11. No. 3. P. 577.
- Zenteno-Hernandez J.A., Lozano J.V., Sarabia-Alonso J.A. et al. // Opt. Lett. 2020. V. 45. P. 3961.
- Hosokawa Ch., Tsuji T., Kishimoto T. et al. // J. Phys. Chem. C. 2020. V. 124. P. 8323.
- Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
- Kollipara P., Chen Z., Zheng Y. // ACS Nano. 2023. V. 17. P. 7051.
- Chen Z., Li J., Zheng Y. // Chem. Rev. 2021. V. 122. P. 3122.
Supplementary files
