Capabilities of optothermal traps for space ordering of microscopic objects
- 作者: Mayorova А.M.1, Kotova S.P.1, Losevsky N.N.1, Prokopova D.V.1, Samagin S.A.1
-
隶属关系:
- Lebedev Physical Institute of the Russian Academy of Sciences
- 期: 卷 88, 编号 12 (2024)
- 页面: 1844-1850
- 栏目: Nanooptics, photonics and coherent spectroscopy
- URL: https://journals.rcsi.science/0367-6765/article/view/286460
- DOI: https://doi.org/10.31857/S0367676524120017
- EDN: https://elibrary.ru/EYGRLX
- ID: 286460
如何引用文章
详细
Experimental results on the formation of ordered structures of latex microparticles with diameters of 3 and 5 micrometers using arrays of point optothermal traps are presented. To implement these traps, the working area of the phase mask was divided into sub-elements, for each of which a specific distribution of phase delay of the prism (wedge) was specified.
全文:

作者简介
А. Mayorova
Lebedev Physical Institute of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: mayorovaal@smr.lebedev.ru
Samara Branch
俄罗斯联邦, SamaraS. Kotova
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
俄罗斯联邦, SamaraN. Losevsky
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
俄罗斯联邦, SamaraD. Prokopova
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
俄罗斯联邦, SamaraS. Samagin
Lebedev Physical Institute of the Russian Academy of Sciences
Email: mayorovaal@smr.lebedev.ru
Samara Branch
俄罗斯联邦, Samara参考
- Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
- Jing P., Liu Y., Keeler E.G. et al. // Biomed. Opt. Express. 2018. V. 9. P. 771.
- Li P., Yu H., Wang X. et al. // Opt. Express. 2021. V. 29. P. 11144.
- Lu F., Gong L., Kuai Y. et al. // Photon. Res. 2022. V. 10. P. 14.
- Guex A.G., Di Marzio N., Eglin D. et al. // Mater. Today Bio. 2021. V. 10. Art. No. 100110.
- Yoo J., Kim J., Lee J., Kim H.H. // iScience. 2023. V. 26. No. 11. Art. No. 108178.
- Минаев Н.В., Юсупов В.И., Чурбанова Е.С. и др. // Прибор. и техн. экспер. 2019. № 1. С. 153.
- Юсупов В.И., Жигарьков В.С., Чурбанова Е.С. и др. // Квант. электрон. 2017. Т. 47. № 12. С. 1158.
- Zhang D., Ren Y., Barbot A. et al. // Matter. 2022. V. 5. No. 10. P. 3135.
- Song Y., Yin J., Huang W., et al. // Trends Analyt. Chem. 2023. Art. No. 117444.
- Rodrigo J.A., Martínez-Matos Ó., Alieva T. // Photon. Res. 2022. V. 10. P. 2560.
- Afanasiev K., Korobtsov A., Kotova S. et al. // J. Phys. Conf. Ser. 2013. V. 414. Art. No. 012017.
- Rubinsztein-Dunlop H., Forbes A., Berry M. et al. // J. Optics. 2017. V. 19. Art. No. 013001.
- Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1685, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1434.
- Kotova S.P., Коrobtsov A.V., Losevsky N.N. et al. // J. Quant. Spectrosc. Radiat. 2021. V. 268. Art. No. 107641.
- Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1682, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1767.
- Прокопова Д.В., Котова С.П., Самагин С.А. // Изв. РАН. Сер. Физ. 2021. Т. 85. № 8. С. 1205, Prokopova D.V., Kotova S.P., Samagin S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 928.
- Zemánek P., Volpe G., Jonáš A., Brzobohatý O. // Adv. Opt. Photon. 2019. V. 11. No. 3. P. 577.
- Zenteno-Hernandez J.A., Lozano J.V., Sarabia-Alonso J.A. et al. // Opt. Lett. 2020. V. 45. P. 3961.
- Hosokawa Ch., Tsuji T., Kishimoto T. et al. // J. Phys. Chem. C. 2020. V. 124. P. 8323.
- Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
- Kollipara P., Chen Z., Zheng Y. // ACS Nano. 2023. V. 17. P. 7051.
- Chen Z., Li J., Zheng Y. // Chem. Rev. 2021. V. 122. P. 3122.
补充文件
