Characterization of vertically aligned carbon nanotubes by piezoresponse force microscopy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The piezoelectric properties of vertically aligned carbon nanotubes (CNTs) are characterized using the piezoresponse force microscopy method. Dependence of piezoelectric properties on the nitrogen concentration is established. It is shown that CNTs have predominantly longitudinal polarization due to the direction of the dipole moment in the bamboo-like “bridges”. It has been established that a decrease in the growth temperature from 690 to 645°С leads to an increase in the piezoelectric strain coefficient of CNTs from 4.5 to 21.2 pm ⋅ V–1. The obtained results can be used in the development of energy-efficient nanopiezotronic devices.

Авторлар туралы

M. Il’ina

Southern Federal University, Institute of Nanotechnologies, Electronics and Equipment Engineering

Хат алмасуға жауапты Автор.
Email: mailina@sfedu.ru
Russia, 347922, Taganrog

O. Soboleva

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

M. Polyvianova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

D. Selivanova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

S. Khubezhov

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology; North Ossetian State University

Email: mailina@sfedu.ru
Russia, 347922, Taganrog; Russia, 125993, Vladikavkaz

O. Il’in

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

Әдебиет тізімі

  1. Wang Z.L. // Adv. Mater. 2012. V. 24. No. 34. P. 4632.
  2. Wang Z.L. // Adv. Mater. 2007. V. 19. No. 6. P. 889.
  3. Gao Y., Wang Z.L. // Nano Lett. 2007. V. 7. No. 8. P. 2499.
  4. Hu Y., Wang Z.L. // Nano Energy. 2014. V. 14. P. 3.
  5. Wang Z.L. // Nano Today. 2010. V. 5. No. 6. P. 540.
  6. He J. H., Hsin C. L., Liu J. et al. // Adv. Mater. 2007. V. 19. No. 6. P. 781.
  7. Mahapatra S. Das, Mohapatra P.C., Aria A.I. et al. // Adv. Sci. 2021. V. 8. No. 17. Art. No. 2100864.
  8. Choi I., Lee S.-J., Kim J.C. et al. // Appl. Surf. Sci. 2020. V. 511. Art. No. 145614.
  9. Wang X., Tian H., Xie W. et al. // NPG Asia Mater. 2015. V. 7. No. 1. Art. No. e154.
  10. da Cunha Rodrigues G., Zelenovskiy P., Romanyuk K. et al. // Nature Commun. 2015. V. 6. Art. No. 7572.
  11. Bistoni O., Barone P., Cappelluti E. et al. // 2D Mater. 2019. V. 6. No. 4. Art. No. 045015.
  12. Duggen L., Willatzen M., Wang Z.L. // J. Phys. Chem. C. 2018. V. 122. No. 36. P. 20581.
  13. Chandratre S., Sharma P. // Appl. Phys. Lett. 2012. V. 100. No. 2. Art. No. 023114.
  14. Ong M.T., Reed E.J. // ACS Nano 2012. V. 6. No. 2. P. 1387.
  15. Il’ina M.V., Il’in O.I., Guryanov A.V. et al. // J. Mater. Chem. C. 2021. V. 9. No. 18. P. 6014.
  16. Il’ina M., Il’in O., Osotova O. et al. // Carbon. 2022. V. 190. P. 348.
  17. Il’ina M.V., Osotova O.I., Rudyk N.N. et al. // Diam. Relat. Mater. 2022. V. 126. Art. No. 109069.
  18. Il’ina M.V., Soboleva O.I., Rudyk N.N. et al. // J. Adv. Dielectr. 2022. Art. No. 2241001.
  19. Il’ina M.V., Il’in O.I., Smirnov V.A. et al. Atomic-force microscopy and its applications. IntechOpen, 2019. P. 49.
  20. Агеев О.А., Ильин О.И., Коломийцев А.С. и др. // Нано-микросист. техн. 2012. № 3. С. 9.
  21. Il’ina M. V., Il’in O.I., Rudyk N.N. et al. // Nanomaterials. 2021. V. 11. No. 11. Art. No. 2912.
  22. Il’in O.I., Il’ina M.V., Rudyk N.N. et al. // Nanosyst. Phys. Chem. Math. 2018. V. 9. No. 1. P. 92.
  23. Neumayer S.M., Saremi S., Martin L.W. et al. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 171105.
  24. Il’in O.I., Rudyk N.N., Fedotov A.A. et al. // Nanomaterials. 2020. V. 10. No. 3. Art. No. 554.
  25. Louchev O.A. // Phys. Stat. Sol. Appl. Res. 2002. V. 193. No. 3. P. 585.
  26. Lee W.J., Maiti U.N., Lee J.M. et al. // Chem. Commun. 2014. V. 50. No. 52. P. 6818.
  27. Yamada Y., Kim J., Matsuo S., Sato S. // Carbon. 2014. V. 70. P. 59.
  28. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. V. 132. P. 104.
  29. Arenal R., Henrard L., Roiban L. et al. // Nano Lett. 2014. V. 14. No. 10. P. 5509.
  30. Kundalwal S.I., Meguid S.A., Weng G.J. // Carbon. 2017. V. 117. P. 462.
  31. Ильина М. В., Ильин О. И., Осотова О. И. и др. // Росс. нанотехнол. 2021. Т. 16. № 6. С. 857. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Nanobiotechnol. Rep. 2021. V. 16. No. 6. P. 821.
  32. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Diam. Relat. Mater. 2022. V. 123. Art. No. 108858.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (3MB)
3.

Жүктеу (116KB)
4.

Жүктеу (3MB)
5.

Жүктеу (32KB)

© М.В. Ильина, О.И. Соболева, М.Р. Полывянова, Д.И. Селиванова, С.А. Хубежов, О.И. Ильин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>