Characterization of vertically aligned carbon nanotubes by piezoresponse force microscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The piezoelectric properties of vertically aligned carbon nanotubes (CNTs) are characterized using the piezoresponse force microscopy method. Dependence of piezoelectric properties on the nitrogen concentration is established. It is shown that CNTs have predominantly longitudinal polarization due to the direction of the dipole moment in the bamboo-like “bridges”. It has been established that a decrease in the growth temperature from 690 to 645°С leads to an increase in the piezoelectric strain coefficient of CNTs from 4.5 to 21.2 pm ⋅ V–1. The obtained results can be used in the development of energy-efficient nanopiezotronic devices.

About the authors

M. V. Il’ina

Southern Federal University, Institute of Nanotechnologies, Electronics and Equipment Engineering

Author for correspondence.
Email: mailina@sfedu.ru
Russia, 347922, Taganrog

O. I. Soboleva

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

M. R. Polyvianova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

D. I. Selivanova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

S. A. Khubezhov

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology; North Ossetian State University

Email: mailina@sfedu.ru
Russia, 347922, Taganrog; Russia, 125993, Vladikavkaz

O. I. Il’in

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

References

  1. Wang Z.L. // Adv. Mater. 2012. V. 24. No. 34. P. 4632.
  2. Wang Z.L. // Adv. Mater. 2007. V. 19. No. 6. P. 889.
  3. Gao Y., Wang Z.L. // Nano Lett. 2007. V. 7. No. 8. P. 2499.
  4. Hu Y., Wang Z.L. // Nano Energy. 2014. V. 14. P. 3.
  5. Wang Z.L. // Nano Today. 2010. V. 5. No. 6. P. 540.
  6. He J. H., Hsin C. L., Liu J. et al. // Adv. Mater. 2007. V. 19. No. 6. P. 781.
  7. Mahapatra S. Das, Mohapatra P.C., Aria A.I. et al. // Adv. Sci. 2021. V. 8. No. 17. Art. No. 2100864.
  8. Choi I., Lee S.-J., Kim J.C. et al. // Appl. Surf. Sci. 2020. V. 511. Art. No. 145614.
  9. Wang X., Tian H., Xie W. et al. // NPG Asia Mater. 2015. V. 7. No. 1. Art. No. e154.
  10. da Cunha Rodrigues G., Zelenovskiy P., Romanyuk K. et al. // Nature Commun. 2015. V. 6. Art. No. 7572.
  11. Bistoni O., Barone P., Cappelluti E. et al. // 2D Mater. 2019. V. 6. No. 4. Art. No. 045015.
  12. Duggen L., Willatzen M., Wang Z.L. // J. Phys. Chem. C. 2018. V. 122. No. 36. P. 20581.
  13. Chandratre S., Sharma P. // Appl. Phys. Lett. 2012. V. 100. No. 2. Art. No. 023114.
  14. Ong M.T., Reed E.J. // ACS Nano 2012. V. 6. No. 2. P. 1387.
  15. Il’ina M.V., Il’in O.I., Guryanov A.V. et al. // J. Mater. Chem. C. 2021. V. 9. No. 18. P. 6014.
  16. Il’ina M., Il’in O., Osotova O. et al. // Carbon. 2022. V. 190. P. 348.
  17. Il’ina M.V., Osotova O.I., Rudyk N.N. et al. // Diam. Relat. Mater. 2022. V. 126. Art. No. 109069.
  18. Il’ina M.V., Soboleva O.I., Rudyk N.N. et al. // J. Adv. Dielectr. 2022. Art. No. 2241001.
  19. Il’ina M.V., Il’in O.I., Smirnov V.A. et al. Atomic-force microscopy and its applications. IntechOpen, 2019. P. 49.
  20. Агеев О.А., Ильин О.И., Коломийцев А.С. и др. // Нано-микросист. техн. 2012. № 3. С. 9.
  21. Il’ina M. V., Il’in O.I., Rudyk N.N. et al. // Nanomaterials. 2021. V. 11. No. 11. Art. No. 2912.
  22. Il’in O.I., Il’ina M.V., Rudyk N.N. et al. // Nanosyst. Phys. Chem. Math. 2018. V. 9. No. 1. P. 92.
  23. Neumayer S.M., Saremi S., Martin L.W. et al. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 171105.
  24. Il’in O.I., Rudyk N.N., Fedotov A.A. et al. // Nanomaterials. 2020. V. 10. No. 3. Art. No. 554.
  25. Louchev O.A. // Phys. Stat. Sol. Appl. Res. 2002. V. 193. No. 3. P. 585.
  26. Lee W.J., Maiti U.N., Lee J.M. et al. // Chem. Commun. 2014. V. 50. No. 52. P. 6818.
  27. Yamada Y., Kim J., Matsuo S., Sato S. // Carbon. 2014. V. 70. P. 59.
  28. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. V. 132. P. 104.
  29. Arenal R., Henrard L., Roiban L. et al. // Nano Lett. 2014. V. 14. No. 10. P. 5509.
  30. Kundalwal S.I., Meguid S.A., Weng G.J. // Carbon. 2017. V. 117. P. 462.
  31. Ильина М. В., Ильин О. И., Осотова О. И. и др. // Росс. нанотехнол. 2021. Т. 16. № 6. С. 857. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Nanobiotechnol. Rep. 2021. V. 16. No. 6. P. 821.
  32. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Diam. Relat. Mater. 2022. V. 123. Art. No. 108858.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (116KB)
4.

Download (3MB)
5.

Download (32KB)

Copyright (c) 2023 М.В. Ильина, О.И. Соболева, М.Р. Полывянова, Д.И. Селиванова, С.А. Хубежов, О.И. Ильин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies