Characterization of vertically aligned carbon nanotubes by piezoresponse force microscopy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The piezoelectric properties of vertically aligned carbon nanotubes (CNTs) are characterized using the piezoresponse force microscopy method. Dependence of piezoelectric properties on the nitrogen concentration is established. It is shown that CNTs have predominantly longitudinal polarization due to the direction of the dipole moment in the bamboo-like “bridges”. It has been established that a decrease in the growth temperature from 690 to 645°С leads to an increase in the piezoelectric strain coefficient of CNTs from 4.5 to 21.2 pm ⋅ V–1. The obtained results can be used in the development of energy-efficient nanopiezotronic devices.

作者简介

M. Il’ina

Southern Federal University, Institute of Nanotechnologies, Electronics and Equipment Engineering

编辑信件的主要联系方式.
Email: mailina@sfedu.ru
Russia, 347922, Taganrog

O. Soboleva

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

M. Polyvianova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

D. Selivanova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

S. Khubezhov

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology; North Ossetian State University

Email: mailina@sfedu.ru
Russia, 347922, Taganrog; Russia, 125993, Vladikavkaz

O. Il’in

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

参考

  1. Wang Z.L. // Adv. Mater. 2012. V. 24. No. 34. P. 4632.
  2. Wang Z.L. // Adv. Mater. 2007. V. 19. No. 6. P. 889.
  3. Gao Y., Wang Z.L. // Nano Lett. 2007. V. 7. No. 8. P. 2499.
  4. Hu Y., Wang Z.L. // Nano Energy. 2014. V. 14. P. 3.
  5. Wang Z.L. // Nano Today. 2010. V. 5. No. 6. P. 540.
  6. He J. H., Hsin C. L., Liu J. et al. // Adv. Mater. 2007. V. 19. No. 6. P. 781.
  7. Mahapatra S. Das, Mohapatra P.C., Aria A.I. et al. // Adv. Sci. 2021. V. 8. No. 17. Art. No. 2100864.
  8. Choi I., Lee S.-J., Kim J.C. et al. // Appl. Surf. Sci. 2020. V. 511. Art. No. 145614.
  9. Wang X., Tian H., Xie W. et al. // NPG Asia Mater. 2015. V. 7. No. 1. Art. No. e154.
  10. da Cunha Rodrigues G., Zelenovskiy P., Romanyuk K. et al. // Nature Commun. 2015. V. 6. Art. No. 7572.
  11. Bistoni O., Barone P., Cappelluti E. et al. // 2D Mater. 2019. V. 6. No. 4. Art. No. 045015.
  12. Duggen L., Willatzen M., Wang Z.L. // J. Phys. Chem. C. 2018. V. 122. No. 36. P. 20581.
  13. Chandratre S., Sharma P. // Appl. Phys. Lett. 2012. V. 100. No. 2. Art. No. 023114.
  14. Ong M.T., Reed E.J. // ACS Nano 2012. V. 6. No. 2. P. 1387.
  15. Il’ina M.V., Il’in O.I., Guryanov A.V. et al. // J. Mater. Chem. C. 2021. V. 9. No. 18. P. 6014.
  16. Il’ina M., Il’in O., Osotova O. et al. // Carbon. 2022. V. 190. P. 348.
  17. Il’ina M.V., Osotova O.I., Rudyk N.N. et al. // Diam. Relat. Mater. 2022. V. 126. Art. No. 109069.
  18. Il’ina M.V., Soboleva O.I., Rudyk N.N. et al. // J. Adv. Dielectr. 2022. Art. No. 2241001.
  19. Il’ina M.V., Il’in O.I., Smirnov V.A. et al. Atomic-force microscopy and its applications. IntechOpen, 2019. P. 49.
  20. Агеев О.А., Ильин О.И., Коломийцев А.С. и др. // Нано-микросист. техн. 2012. № 3. С. 9.
  21. Il’ina M. V., Il’in O.I., Rudyk N.N. et al. // Nanomaterials. 2021. V. 11. No. 11. Art. No. 2912.
  22. Il’in O.I., Il’ina M.V., Rudyk N.N. et al. // Nanosyst. Phys. Chem. Math. 2018. V. 9. No. 1. P. 92.
  23. Neumayer S.M., Saremi S., Martin L.W. et al. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 171105.
  24. Il’in O.I., Rudyk N.N., Fedotov A.A. et al. // Nanomaterials. 2020. V. 10. No. 3. Art. No. 554.
  25. Louchev O.A. // Phys. Stat. Sol. Appl. Res. 2002. V. 193. No. 3. P. 585.
  26. Lee W.J., Maiti U.N., Lee J.M. et al. // Chem. Commun. 2014. V. 50. No. 52. P. 6818.
  27. Yamada Y., Kim J., Matsuo S., Sato S. // Carbon. 2014. V. 70. P. 59.
  28. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. V. 132. P. 104.
  29. Arenal R., Henrard L., Roiban L. et al. // Nano Lett. 2014. V. 14. No. 10. P. 5509.
  30. Kundalwal S.I., Meguid S.A., Weng G.J. // Carbon. 2017. V. 117. P. 462.
  31. Ильина М. В., Ильин О. И., Осотова О. И. и др. // Росс. нанотехнол. 2021. Т. 16. № 6. С. 857. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Nanobiotechnol. Rep. 2021. V. 16. No. 6. P. 821.
  32. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Diam. Relat. Mater. 2022. V. 123. Art. No. 108858.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (3MB)
3.

下载 (116KB)
4.

下载 (3MB)
5.

下载 (32KB)

版权所有 © М.В. Ильина, О.И. Соболева, М.Р. Полывянова, Д.И. Селиванова, С.А. Хубежов, О.И. Ильин, 2023

##common.cookie##