Study of the sensitivity of moisture-sensitive structures with UV reduction on the basis of ZnO produced by the sol-gel method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A structure based on a thin-film nanocrystalline zinc oxide obtained by the sol-gel method on a flexible Kapton substrate has been developed. It has been established that its electrical resistance increases significantly under the influence of moisture contained in the air. When irradiated with ultraviolet radiation, the resistance of the structure decreases by almost two orders of magnitude. After the UV exposure finish, a long-term process of restoration of electrical conductivity is observed, which is described by the fractional-exponential Kohlrausch function.

About the authors

D. S. Permyakov

Voronezh State Technical University

Author for correspondence.
Email: Dima.P.S@yandex.ru
Russia, 394006, Voronezh

M. A. Belykh

Voronezh State Technical University

Email: Dima.P.S@yandex.ru
Russia, 394006, Voronezh

A. V. Strogonov

Voronezh State Technical University

Email: Dima.P.S@yandex.ru
Russia, 394006, Voronezh

References

  1. Гаськов А.М., Румянцева М.Н. // Неорг. матер. 2000. Т. 36. № 3. С. 369; Gas’kov A.M., Rumyantseva M.N. // Inorg. Mater. 2000. V. 36. No. 3. P. 293.
  2. Christopher B. // Sci. Reports. 2017. V. 7. No. 6053. P. 1.
  3. Singh H., Kumar A., Bansod B.S. et al. // RSC Advances. 2018. V. 8. P. 3839.
  4. Droepenu E.K., Wee B.S., Chin S.F. et al // Biointerface Res. Appl. Chem. 2022. V. 12. No. 3. P. 4261.
  5. Tsoutsouva M., Panagopoulos C.N., Papadimitriou D. // Mater. Sci. Engin. B. 2011. V. 176. No. 6. P. 480.
  6. Pranav D., Kartik P., Kamlesh C. // Proc. Technol. 2016. V. 23. P. 328.
  7. Skowronski L., Ciesielski A., Olszewska A. // Materials (Basel). 2020. V. 13. No. 16. P. 3510.
  8. Sonima M., Mini V., Arun A. // Nano Express. 2020. V. 1. No. 3. P. 1.
  9. Zoltan K., Csanad M., Tamas G. // Catalysis Today. 2022. V. 397. P. 16.
  10. Poornajar M., Marashi P., Fatmehsari D.H. // Ceram. Int. 2016. V. 42. No. 1. P. 173.
  11. Heitmann U., Westraadt J., O’Connell J. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. No. 36. P. 41 149.
  12. Aljameel A.I., Ali M.K.M. // J. Non-Oxide Glass. 2021. V. 13. No. 2. P. 21.
  13. Kidalov V., Dyadenchuk A., Bacherikov Y. et al // Turk. J. Phys. 2020. V. 44. No. 1. P. 55.
  14. Wisz G., Virt I., Sagan P. et al // Nanoscale Res. Lett. 2017. V. 12. No. 253. P. 1.
  15. Белых М.А. // Межвуз. сб. науч. тр. “Твердотельная электроника, микроэлектроника и наноэлектроника”. Воронеж: Изд-во ВГТУ, 2020. С. 37.
  16. Пермяков Д.С., Белых М.А., Строгонов А.В. // Межвуз. сб. науч. тр. “Микроэлектроника и наноэлектроника: актуальные проблемы”. Воронеж: Изд-во ВГТУ, 2021. С. 4.
  17. Jian Lin // Nature Commun. 2014. V. 5. No. 5714. P. 2.
  18. Коренблит И.Я., Шендер Е.Ф. // УФН. 1989. Т. 157. № 2. С. 267; Korenblit I.Ya., Shender E.F. // Sov. Phys. Usp. 1989. V. 32. No. 2. P. 139.
  19. Hochli U.T., Knorr K., Loidl A. // Adv. Phys. 1990. V. 39. P. 405.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (607KB)
3.

Download (140KB)
4.

Download (142KB)
5.

Download (107KB)

Copyright (c) 2023 Д.С. Пермяков, М.А. Белых, А.В. Строгонов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies