Study of the sensitivity of moisture-sensitive structures with UV reduction on the basis of ZnO produced by the sol-gel method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A structure based on a thin-film nanocrystalline zinc oxide obtained by the sol-gel method on a flexible Kapton substrate has been developed. It has been established that its electrical resistance increases significantly under the influence of moisture contained in the air. When irradiated with ultraviolet radiation, the resistance of the structure decreases by almost two orders of magnitude. After the UV exposure finish, a long-term process of restoration of electrical conductivity is observed, which is described by the fractional-exponential Kohlrausch function.

作者简介

D. Permyakov

Voronezh State Technical University

编辑信件的主要联系方式.
Email: Dima.P.S@yandex.ru
Russia, 394006, Voronezh

M. Belykh

Voronezh State Technical University

Email: Dima.P.S@yandex.ru
Russia, 394006, Voronezh

A. Strogonov

Voronezh State Technical University

Email: Dima.P.S@yandex.ru
Russia, 394006, Voronezh

参考

  1. Гаськов А.М., Румянцева М.Н. // Неорг. матер. 2000. Т. 36. № 3. С. 369; Gas’kov A.M., Rumyantseva M.N. // Inorg. Mater. 2000. V. 36. No. 3. P. 293.
  2. Christopher B. // Sci. Reports. 2017. V. 7. No. 6053. P. 1.
  3. Singh H., Kumar A., Bansod B.S. et al. // RSC Advances. 2018. V. 8. P. 3839.
  4. Droepenu E.K., Wee B.S., Chin S.F. et al // Biointerface Res. Appl. Chem. 2022. V. 12. No. 3. P. 4261.
  5. Tsoutsouva M., Panagopoulos C.N., Papadimitriou D. // Mater. Sci. Engin. B. 2011. V. 176. No. 6. P. 480.
  6. Pranav D., Kartik P., Kamlesh C. // Proc. Technol. 2016. V. 23. P. 328.
  7. Skowronski L., Ciesielski A., Olszewska A. // Materials (Basel). 2020. V. 13. No. 16. P. 3510.
  8. Sonima M., Mini V., Arun A. // Nano Express. 2020. V. 1. No. 3. P. 1.
  9. Zoltan K., Csanad M., Tamas G. // Catalysis Today. 2022. V. 397. P. 16.
  10. Poornajar M., Marashi P., Fatmehsari D.H. // Ceram. Int. 2016. V. 42. No. 1. P. 173.
  11. Heitmann U., Westraadt J., O’Connell J. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. No. 36. P. 41 149.
  12. Aljameel A.I., Ali M.K.M. // J. Non-Oxide Glass. 2021. V. 13. No. 2. P. 21.
  13. Kidalov V., Dyadenchuk A., Bacherikov Y. et al // Turk. J. Phys. 2020. V. 44. No. 1. P. 55.
  14. Wisz G., Virt I., Sagan P. et al // Nanoscale Res. Lett. 2017. V. 12. No. 253. P. 1.
  15. Белых М.А. // Межвуз. сб. науч. тр. “Твердотельная электроника, микроэлектроника и наноэлектроника”. Воронеж: Изд-во ВГТУ, 2020. С. 37.
  16. Пермяков Д.С., Белых М.А., Строгонов А.В. // Межвуз. сб. науч. тр. “Микроэлектроника и наноэлектроника: актуальные проблемы”. Воронеж: Изд-во ВГТУ, 2021. С. 4.
  17. Jian Lin // Nature Commun. 2014. V. 5. No. 5714. P. 2.
  18. Коренблит И.Я., Шендер Е.Ф. // УФН. 1989. Т. 157. № 2. С. 267; Korenblit I.Ya., Shender E.F. // Sov. Phys. Usp. 1989. V. 32. No. 2. P. 139.
  19. Hochli U.T., Knorr K., Loidl A. // Adv. Phys. 1990. V. 39. P. 405.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (607KB)
3.

下载 (140KB)
4.

下载 (142KB)
5.

下载 (107KB)

版权所有 © Д.С. Пермяков, М.А. Белых, А.В. Строгонов, 2023

##common.cookie##