Fermi level pinning on the (110) oxidized surface of AIII-Sb semiconductors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pinning of the Fermi level on the oxidized (110) surface of AIII-Sb semiconductors (GaSb, Ga0.78In0.22As0.18Sb0.82, Ga0.66Al0.34As0.025Sb0.975) was studied. It is shown that the Fermi level is pinned at 4.65 ± 0.1 eV from the vacuum level. The presence of Sb was shown for the photooxidized Ga0.78In0.22As0.18Sb0.82 and Ga0.66Al0.34As0.025Sb0.975 surfaces. The formation of Sb on the surface because of faster oxidation of group III elements results in pinning of the Fermi level at the same distance from the vacuum level in III-Sb compounds.

About the authors

P. A. Alekseev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: prokhor@mail.ioffe.ru
Russia, 194021, Saint-Petersburg

A. N. Smirnov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: prokhor@mail.ioffe.ru
Russia, 194021, Saint-Petersburg

V. A. Sharov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: prokhor@mail.ioffe.ru
Russia, 194021, Saint-Petersburg

B. R. Borodin

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: prokhor@mail.ioffe.ru
Russia, 194021, Saint-Petersburg

E. V. Kunitsyna

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: prokhor@mail.ioffe.ru
Russia, 194021, Saint-Petersburg

References

  1. Alekseev P.A., Dunaevskiy M.S., Cirlin G.E. et al. // Nanotechnology. 2018. V. 29. Art. No. 314003.
  2. Woodall J., Freeouf J. // J. Vacuum. Sci. Technol. 1981. V. 19. P. 794.
  3. Baier H.-U., Koenders L., Mönch W. // Solid State Comm. 1986. V. 58. P. 327.
  4. Spicer W. E., Lindau I., Skeath P. et al. // Phys. Rev. Lett. 1980. V. 44. P. 420.
  5. Marozas B., Hughes W., Du X. et al. // Opt. Mater. Express. 2018. V. 8. P. 1419.
  6. Andreev I., Il’inskaya N., Kunitsyna E. et al. // Semiconductors. 2013. V. 37. P. 949.
  7. Dunaevskiy M., Alekseev P., Girard P. et al. // J. Appl. Phys. 2012. V. 112. Art. No. 064112.
  8. Alekseev P., Dunaevskiy M., Kirilenko D. et al. // J. Appl. Phys. 2017. V. 121. Art. No. 074302.
  9. Su Y., Gan K., Hwang J., Tyan S. // J. Appl. Phys. 1990. V. 68. P. 5584.
  10. Haines M., Kerr T., Newstead S., Kirby P. // J. Appl. Phys. 1989. V. 65. P. 1942.
  11. Schwartz G., Gualtieri G., Griffiths J. et al. // J. Electrochem. Soc. 1980. V. 127. P. 2488.
  12. Michaelson H.B. // J. Appl. Phys. 1977. V. 48. P. 4729.
  13. Hasegawa H., Hideo O. // J. Vacuum. Sci. Technol. B. 1986. V. 4. P. 1130.
  14. Freeouf J., Woodall J. // Appl. Phys. Lett. 1981. V. 39. P. 727.
  15. Sharov V., Alekseev P., Fedorov V. et al. // Appl. Surf. Sci. 2021. V. 563. Art. No. 150018.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (63KB)
3.

Download (136KB)

Copyright (c) 2023 П.А. Алексеев, А.Н. Смирнов, В.А. Шаров, Б.Р. Бородин, Е.В. Куницына

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies