Seasonal variability of nutrients and organic carbon in the Kamchatka and Avacha Rivers (Kamchatka Peninsula) in 2023

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In 2023, during the main phases of the water regime, four expeditions were carried out to collect water samples from sources to mouths in the Kamchatka and Avacha rivers, flowing into Kamchatka Bay and Avacha Bay of Eastern Kamchatka, respectively. In the r. In Kamchatka, seasonal extremes of concentrations and fluxes with river runoff of dissolved and organic phosphorus, as well as organic carbon, were established during the period of snow melting in the river valley and in the highlands (May–June), which was less in the river. Avacha. The annual fluxes with the runoff of the Kamchatka River and the Avacha River were respectively 4565 and 289 tons/year for Ptot, 9526 and 2006 tons/year for Ntot, 60485 and 3992 tons/year for DOC. The article discusses the sources and fluxes of nutrients in the catchments of the studied rivers and the potential responses of the aquatic ecosystems of the receiving basins in connection with volcanism, including in connection with the eruption of the Shiveluch volcano, which occurred on April 11, 2023.

Texto integral

Acesso é fechado

Sobre autores

P. Semkin

Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: pahno@list.ru
Rússia, Vladivostok, 690041

G. Pavlova

Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: pahno@list.ru
Rússia, Vladivostok, 690041

S. Gorin

Russian Federal Research Institute of Fisheries and Oceanography

Email: pahno@list.ru
Rússia, Moskow, 105187

A. Koltunov

Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: pahno@list.ru
Rússia, Vladivostok, 690041

E. Lepskaya

Russian Federal Research Institute of Fisheries and Oceanography

Email: pahno@list.ru

Kamchatka branch

Rússia, Petropavlovsk-Kamchatsky, 683000

O. Ulanova

Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: pahno@list.ru
Rússia, Vladivostok, 690041

E. Shkirnikova

Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: pahno@list.ru
Rússia, Vladivostok, 690041

M. Shvetsova

Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: pahno@list.ru
Rússia, Vladivostok, 690041

Y. Xu

East China Normal University (ECNU)

Email: pahno@list.ru

State Key Laboratory of Estuarine and Coastal Research (SKLEC)

República Popular da China, Shanghai, 200241

S. Jiang

East China Normal University (ECNU)

Email: pahno@list.ru

State Key Laboratory of Estuarine and Coastal Research (SKLEC)

República Popular da China, Shanghai, 200241

J. Zhang

East China Normal University (ECNU)

Email: pahno@list.ru

State Key Laboratory of Estuarine and Coastal Research (SKLEC)

República Popular da China, Shanghai, 200241

Bibliografia

  1. Батурин Г.Н., Зайцева Л.В., Маневич Т.М. Геохимия вулканических пеплов исландского и камчатских вулканов // ДАН. 2012. Т. 443. № 3. С. 342–346.
  2. Влодавец В.И., Пийп Б.И. Каталог действующих вулканов Камчатки // Бюлл. вулканологических станций. 1957. № 25.
  3. Горин С.Л. Гидролого-морфологические процессы в эстуариях Камчатки. Автореф. дис. … канд. геогр. наук. М.: МГУ, 2009. М.: 26 с.
  4. Захарихина Л.В., Литвиненко Ю.С. Вулканизм и геохимия почвенно-растительного покрова Камчатки. Сообщ. 3. Элементный состав растительности вулканических экосистем // Вулканология и сейсмология. 2019. № 4. C. 40–51.
  5. Коновалова Г.В. “Красные приливы” у Восточной Камчатки: посвящается памяти Игоря Ивановича Куренкова: атлас-справочник. Петропавловск-Камчатский: Камшат, 1995. 56 с.
  6. Лепская Е.В., Тепнин О.Б., Коломейцев В.В. и др. Исторический обзор исследований и основные результаты комплексного экологического мониторинга Авачинской губы в 2013 году // Исследования водных биологических ресурсов Камчатки и северо-западной части Тихого океана. 2014. Вып. 34. 5–21.
  7. Малик Н.А. Импактный вклад извержений вулканов в формирование химического состава сезонного снежного покрова (Камчатка) // Лед и снег. 2010. № 4. 45–52.
  8. Михайлик Т.А., Тищенко П.Я., Колтунов А.М. и др. Влияние реки Раздольной на экологическое состояние вод Амурского залива (Японское море) // Вод. ресурсы. 2011. Т. 38. № 4. С. 474–484.
  9. Набоко С.И. Вулканические эксгаляции и продукты их реакций // Тр. лаборатории вулканологии. Вып. 16. М.: Изд-во АН СССР, 1959 / Отв. ред. В.И. Влодавец. 303 с.
  10. Пийп Б.И. Извержение Авачинской сопки в 1945 году // Бюлл. вулканологии. 1953. С. 6–23.
  11. Ресурсы поверхностных вод СССР. Т. 20. Камчатка / Под ред. М.Г. Васьковского. Л.: Гидрометеоиздат, 1973. 368 с.
  12. Ресурсы поверхностных вод СССР. Т. 20. Камчатка / Под ред. В.Ч. Здановича. Л.: Гидрометеоиздат, 1977. 294 с.
  13. Семкин П.Ю., Тищенко П.Я., Павлова Г.Ю. и др. Влияние речного стока на гидрохимические характеристики вод Удской губы и залива Николая (Охотское море) в летний сезон // Океанология. 2021. Т. 60. № 3. С. 387–400.
  14. Тищенко П.Я., Семкин П.Ю., Павлова Г.Ю. и др. Гидрохимия эстуария реки Туманной (Японское море) // Океанология. 2018. Т. 58. № 2. С. 192–204.
  15. Фролова Н.Л., Становова А.В., Горин С.Л. Режим стока воды в нижнем течении реки Камчатки и его многолетняя изменчивость // Исследования вод. биол. ресурсов Камчатки и северо-западной части Тихого океана. 2014. № 32. С. 73–78.
  16. Battin T.J., Kaplan L.A., Findlay S. et al. Biophysical controls on organic carbon fluxes in fluvial networks // Nature Geosci. 2008.V. 1. P. 95–100.
  17. Bernard C.Y., Dürr H.H., Heinze C. et al. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean - a model study // Biogeosci. 2011. V. 8. P. 551–564.
  18. Beusen A.H., Bouwman A.F., Van Beek L.P. et al. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum // Biogeosci. 2016. V. 13. P. 2441–2451.
  19. Beusen A.H., Doelman J.C., Van Beek L.P.H. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways // Global Environ. Change. 2022. V. 72. 102426.
  20. Bisson K.M, Gassó S., Mahowald N. et al. Observing ocean ecosystem responses to volcanic ash // Remote Sensing Environ. 2023. V. 296. 113749.
  21. Bouwman A.F., Van Drecht G., Knoop J.M. et al. Exploring changes in river nitrogen export to the world’s oceans // Global Biogeochem. 2005. V. 19. Iss. 1. GB1002.
  22. Browning, T.J., Stone, K., Bouman, H.A. et al. Volcanic ash supply to the surface ocean–Remote sensing of biological responses and their wider biogeochemical significance // Frontiers in Marine Science. 2015. V. 2. https://www.frontiersin.org/articles/10.3389/fmars.2015.00014
  23. Chemtob S.M., Rossman G.R., Young E. D. et al. Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai’i // Geochim. Cosmochim. Acta. 2015. V. 169. P. 63–81.
  24. Cole J.J., Prairie Y.T., Caraco N.F. et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget // Ecosystems. 2007. V. 10. P. 172–185.
  25. Dürr H. H., Meybeck M., Hartmann J. et al. Global spatial distribution of natural riverine silica inputs to the coastal zone // Biogeosci. 2011. V. 8. P. 597–620.
  26. Frogner P., Gislason S.R., Oskarsson N. Fertilizing potential of volcanic ash in ocean surface water // Geol. 2001. V. 29. P. 487–490.
  27. Ganey G., Loso M., Burgess A. et al. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield // Nature Geosci. 2017. V. 10. P. 754–759.
  28. Grasshoff K., Ehrhard M., Kremling K. Methods of Seawater Analysis. Weinheim, Germany: Verlag Chemie, 1983. p. 419.
  29. Hartmann J., Moosdorf N., Lauerwald R. et al. Global chemical weathering and associated p-release – the role of lithology, temperature and soil properties // Chemical Geol. 2014. V. 363. P. 145–163.
  30. Hodgkiss I., Ho K. Are Changes in N: P Ratios in Coastal Waters the Key to Increased Red Tide Blooms? Berlin; Heidelberg, Germany: Springer, 1997. P. 141–147.
  31. Hoffmann L.J., Breitbarth E., Ardelan M.V. et al. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi // Marine Chem. 2012. V. 132. P. 28–33.
  32. https://gmvo.skniivh.ru/
  33. https://allrivers.info/gauge/kamchatka-klyuchi
  34. Huang K., Zhuang Y. Wang Z. et al. Bioavailability of Organic Phosphorus Compounds to the Harmful Dinoflagellate Karenia mikimotoi // Microorganisms. 2021. V. 9. 1961.
  35. Ibarra D.E., Caves J.K., Moon S. et al. Differential weathering of basaltic and granitic catchments from concentration–discharge relationships // Geochim. Cosmochim. Acta. 2016. V. 190. P 265–293.
  36. Jones M.T., Gislason S.R. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments // Geochim. Cosmochim. Acta. 2008. V. 72. 3661–3680.
  37. Li Y., Keppler H. Nitrogen speciation in mantle and crustal fluids // Geochim. Cosmochim. Acta. 2014. V. 129. P. 13–32.
  38. Longman J., Palmer M.R., Gernon T.M., Manners H.R. The role of tephra in enhancing organic carbon preservation in marine sediments // Earth-Sci. Rev. 2019. 192. P. 480–490.
  39. Mather T.A, Allen A.G., Davison B.M. et al. Nitric acid from volcanoes // Earth and Planetary Sci. Lett. 2004. V. 218. Iss. 1–2. P. 17–30.
  40. Medina M., Kaplan D., Milbrandt E.C. et al. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida // Sci. Total Environ. 2022. V. 827. 154149.
  41. Meybeck M. Carbon, nitrogen and phosphorous transport by world rivers // Am. J. Sci. 1982. V. 282. P. 401–450.
  42. Nixon S.F. Coastal marine eutrophication: А definition, social causes, and future concerns // Ophelia. 1995. V. 41. P. 199–219.
  43. Olgun N., Duggen S., Andronico D. et al. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutrient-release experiments in seawater // Mar. Chem. 2013. V. 152. P. 32–42.
  44. Orlova T.Y., Aleksanin A.I., Lepskaya E.V. et al. A massive bloom of Karenia species (Dinophyceae) off the Kamchatka coast, Russia, in the fall of 2020 // Harmful Algae. 2022. V. 120. 102337.
  45. Paerl H.W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources // Limnol. Oceanogr. 1997. V. 42. P. 1154–1165.
  46. Remias D. Cell structure and physiology of alpine snow and ice algae // Plants in alpine regions / Ed. C. Lütz. Vienna: Springer, 2012. 175–185.
  47. Schopka H.H., Derry L.A., Arcilla C.A. Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines // Geochim. Cosmochim. Acta. 2011. V. 75 P. 978–1002.
  48. Schopka H.H., Derry L.A. Chemical weathering fluxes from volcanic islands and the importance of groundwater: Тhe Hawaiian example // Earth Planetary Sci. Lett. 2012. V. 339–340. P. 67–78.
  49. Semkin P.Yu., Pavlova G.Yu., Lobanov V.B. et al. Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka // J. Marine Sci. Engineering. 2023. V. 11. 1299.
  50. Schuler C.G., Mikucki J.A. Microbial ecology and activity of snow algae within a Pacific Northwest snowpack // Arctic, Antarctic Alpine Res. 2023. V. 55 Iss. 1.
  51. Shen A., Liu H., Xin Q. et al. Responses of Marine Diatom–Dinoflagellate Interspecific Competition to Different Phosphorus Sources // J. Mar. Sci. Engineering. 2022. V. 10. 1972.
  52. Sterner R.W., Elser J.J. Ecological stoichiometry // Ecological Stoichiometry. Princeton, NJ, USA: Princeton Univ. Press, 2017.
  53. Symonds R.B., Reed M.H., Rose W.I. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes // Geochim. Cosmochim. Acta. 1992. V. 56. P. 633–657.
  54. Wen Zh., Song K., Shang Y. et al. Natural and anthropogenic impacts on the DOC characteristics in the Yellow River continuum // Environ. Pollution. 2021. V. 287. 117231.
  55. Zhang J., Tishchenko P.Ya., Jiang Z.J. et al. Diverse nature of the seasonally coastal eutrophication dominated by oceanic nutrients: An eco-system based analysis characterized by salmon migration and aquaculture // Marine Pollution Bull. 2023. V. 193. 2023. 115150.
  56. Zhang Q.-C., Wang Y.-F., Song M.-J. et al. First record of a Takayama bloom in Haizhou Bay in response to dissolved organic nitrogen and phosphorus // Marine Pollution Bull. 2022. V. 178. 113572.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Study area: ● – water sampling stations; ▲ – active volcanoes in the basins of the studied rivers.

Baixar (307KB)
3. Fig. 2. Average monthly water flow (m3/s) of the Kamchatka (Klyuchi settlement) – 1 and Avacha (Elizovo settlement) – 2 rivers, obtained by averaging for the period from 2008 to 2020.

Baixar (62KB)
4. Fig. 3. Seasonal variability of BS concentration in the Avacha and Sukhoi Ilchinets rivers and at five stations in the Kamchatka River. The X-axis shows the names of the stations in accordance with Fig. 1: 1 – April 1, 2 – May 22, 3 – June 17, 4 – September 6, 2023.

Baixar (442KB)
5. Fig. 4. Ratios of BW flows into receiving basins from the flow rates of the Kamchatka River (a–e) and the Avacha River (ж–м).

Baixar (417KB)
6. Fig. 5. Images of the Kamchatka River from the left bank of the left channel in the area of ​​the village of Klyuchi: a – April 1; б – May 22; в – June 17; г – September 6, 2023.

Baixar (157KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».