Acute and chronic lipopolysaccharide-induced stress changes expression of proinflammatory cytokine genes in the rat brain region-specifically and affects learning and memory

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The purpose of the current work was a comparative analysis of the effects of acute and chronic lipopolysaccharide stress on behavior of rats in the Morris water maze and expression of mRNA proinflammatory cytokines and BDNF in different brain structures. The relevance of this study is related with a weak knowledge of the effects of acute and chronic stress on manifestation of cognitive brain functions, ambiguity of influences of both stresses on the hypothalamic-pituatary axis and expression of the proinflammatory cytokines genes, as well as contradictory data in the literature. In experiments on rats, the acute lipopolysaccharide (LPS) stress improved learning in the Morris water maze. For the period of learning, the rats swam on average less distance to reach a hidden platform and spent less time in the outer zone of the pool (tigmotaxis) and had a low speed compared to the control animals and a group of rats with chronic LPS stress. In a probe trial without a platform in the pool there were no significant differences between groups on time spent in the platform quadrant and distance swum. The acute stress produced a substantial increase of TNF-α and IL-1β concentration in the hippocampus and amygdala, but not in the frontal cortex relative to the control animals. Although the chronic stress increased the levels of TNF-α and IL-1β in the amygdala and hippocampus compared to the control groups, the significance between the groups was only marginal and the concentration of BDNF did not differ from the control animals in none of the structures mentioned. The concentration of IL-6 marginally increased in acute LPS stress in the amygdala and marginally decreased chronic LPS stress in the hippocamus relative to the saline control groups. In total, the most clear molecular-biochemical changes occurred in the amygdala and hippocampus, where the increase of interleukines TNF-α and IL-1β were seen in the acute and chronic LPS stress and no changes in BDNF concentration in the frontal cortex.

作者简介

M. Zaichenko

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: mariya-zajchenko@yandex.ru
117485 Moscow, Russia

P. Philenko

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: mariya-zajchenko@yandex.ru
117485 Moscow, Russia

V. Sidorina

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: mariya-zajchenko@yandex.ru
117485 Moscow, Russia

G. Grigoryan

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: mariya-zajchenko@yandex.ru
117485 Moscow, Russia

参考

  1. Alexander, C., and Rietschel, E. T. (2001) Bacterial lipopolysaccharides and innate immunity, J. Endotoxin. Res., 7, 167-202, doi: 10.1177/09680519010070030101.
  2. Груздева В. А., Шаркова А. В., Зайченко M. И., Григорьян Г. А. (2021) Влияние раннего провоспалительного стресса на проявление импульсивного поведения у крыс разного возраста и пола, Журн. высш. нервн. деят., 71, 114-125, doi: 10.31857/S0044467721010056.
  3. Kupferschmid, B. J., and Therrien, B. A. (2018) Spatial learning responses to lipopolysaccharide in adult and aged rats, Biol. Res. Nurs., 20, 32-39, doi: 10.1177/1099800417726875.
  4. Зайченко М. И., Шаркова А. В., Павлова И. В., Григорьян Г. А. (2022) Половые различия во влияниях раннего провоспалительного стресса на обучение и память взрослых крыс в водном лабиринте Морриса, Журн. высш. нервн. деят., 72, 233-249, doi: 10.31857/S0044467722020125.
  5. Stepanichev, M. Y., Goryakina, T., Manolova, A., Lazareva, N., Kvichanskii, A., Tretyakova, L., Volobueva, M., and Gulyaeva, N. (2021) Neonatal proinflammatory challenge evokes a microglial response and affects the ratio between subtypes of GABAergic interneurons in the hippocampus of juvenile rats: sex-dependent and sex-independent effects, Brain Struct. Funct., 226, 563-574, doi: 10.1007/s00429-020-02199-z.
  6. Григорьян Г. А. (2020) Половые различия в поведении и биохимических маркерах у животных в ответ на нейровоспалительный стресс, Усп. физиол. наук, 51, 18-32, doi: 10.31857/S0301179820010051.
  7. Alzahrani, N. A., Bahaidrah, K. A., Mansouri, R. A., Alsufiani, H. M., and Alghamdi, B. S. (2022) Investigation of the optimal dose for experimental lipopolysaccharide-induced recognition memory impairment: behavioral and histological studies, J. Integr. Neurosci., 21, 49, doi: 10.31083/j.jin2102049.
  8. Arai, K., Matsuki, N., Ikegaya, Y., and Nishiyama, N. (2001) Deterioration of spatial learning performances in lipopolysaccharide-treated mice, Jpn. J. Pharmacol., 87, 195-201, doi: 10.1254/jjp.87.195.
  9. Couch, Y., Trofimov, A., Markova, N., Nikolenko, V., Steinbusch, H. W., Chekhonin, V., et al. (2016) Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice, J. Neuroinflammation, 13, 108, doi: 10.1186/s12974-016-0572-0.
  10. Dang, R., Guo, Y. Y., Zhang, K., Jiang, P., and Zhao, M. G. (2019) Predictable chronic mild stress promotes recovery from LPS-induced depression, Mol. Brain, 12, 42, doi: 10.1186/s13041-019-0463-2.
  11. Shaw, K. N., Commins, S., and O'Mara, S. M. (2001) Lipopolysaccharide causes deficits in spatial learning in the water maze but not in BDNF expression in the rat dentate gyrus, Behav. Brain Res., 124, 47-54, doi: 10.1016/s0166-4328(01)00232-7.
  12. Sparkman, N. L., Martin, L. A., Calvert, W. S., and Boehm, G. W. (2005) Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice, Behav. Brain Res., 159, 145-151, doi: 10.1016/j.bbr.2004.10.011.
  13. Kupferschmid, B. J., Rowsey, P. J., and Riviera, M. (2020) Characterization of spatial learning and sickness responses in aging rats following recurrent lipopolysaccharide administration, Biol. Res. Nurs., 22, 92-102, doi: 10.1177/1099800419875824.
  14. Kahn, M. S., Kranjac, D., Alonzo, C. A., Haase, J. H., Cedillos, R. O., McLinden, K. A., Boehm, G. W., and Chumley, M. J. (2012) Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse, Behav. Brain Res., 229, 176-184, doi: 10.1016/j.bbr.2012.01.010.
  15. Xin, Y. R., Jiang, J. X., Hu, Y., Pan, J. P., Mi, X. N., Gao, Q., Xiao, F., Zhang, W., and Luo, H. M. (2019) The Immune system drives synapse loss during lipopolysaccharide-induced learning and memory impairment in mice, Front. Aging Neurosci., 11, 279, doi: 10.3389/fnagi.2019.00279.
  16. Barter, J., Kumar, A., Rani, A., Colon-Perez, L. M., Febo, M., and Foster, T. C. (2020) Differential effect of repeated lipopolysaccharide treatment and aging on hippocampal function and biomarkers of hippocampal senescence, Mol. Neurobiol., 57, 4045-4059, doi: 10.1007/s12035-020-02008-y.
  17. Arab, Z., Hosseini, M., Marefati, N., Beheshti, F., Anaeigoudari, A., Sadeghnia, H. R., and Boskabady, M. H. (2022) Neuroprotective and memory enhancing effects of Zataria multiflora in lipopolysaccharide-treated rats, Vet. Res. Forum, 13, 101-110, doi: 10.30466/vrf.2020.117553.2786.
  18. Keymoradzadeh, A., Hedayati, Ch. M., Abedinzade, M., Gazor, R., Rostampour, M., and Taleghani, B. K. (2020) Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats, Behav. Brain Res., 394, 112814, doi: 10.1016/j.bbr.2020.112814.
  19. Jin, Y., Peng, J., Wang, X., Zhang, D., and Wang, T. (2017) Ameliorative effect of ginsenoside rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system, Neurochem. Res., 42, 1299-1307, doi: 10.1007/s11064-016-2171-y.
  20. Sohroforouzani, A. M., Shakerian, S., Ghanbarzadeh, M., and Alaei, H. (2020) Treadmill exercise improves LPS-induced memory impairments via endocannabinoid receptors and cyclooxygenase enzymes, Brain Res., 380, 112440, doi: 10.1016/j.bbr.2019.112440.
  21. Grigoryan, G. A., Mitchell, S. N., Hodges, H., Sinden, J. D., and Gray, J. A. (1994) Are the cognitive-enhancing effects of nicotine in the rat with lesions to the forebrain cholinergic projection system mediated by an interaction with the noradrenergic system? Pharmacol. Biochem. Behav., 49, 511-521, doi: 10.1016/0091-3057(94)90063-9.
  22. Shanks, N., Larocque, S., and Meaney, M. J. (1995) Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress, J. Neurosci., 15, 376-384, doi: 10.1523/JNEUROSCI.15-01-00376.1995.
  23. Shanks, N., Windle, R. J., Perks, P. A., Harbuz, M. S., Jessop, D. S., Ingram, C. D., and Lightman, S. L. (2000) Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation, Proc. Natl. Acad. Sci. USA, 97, 5645-5650, doi: 10.1073/pnas.090571897.
  24. Paxinos, G., and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates, Academic Press, 6th Edn, San Diego.
  25. Dobryakova, Y. V., Kasianov, A., Zaichenko, M. I., Stepanichev, M. Y., Chesnokova, E. A., Kolosov, P. M., Markevich, V. A., and Bolshakov, A. P. (2018) Intracerebroventricular administration of 192IgG-saporin alters expression of microglia-associated genes in the dorsal but not ventral hippocampus, Front. Mol. Neurosci., 10, 429, doi: 10.3389/fnmol.2017.00429.
  26. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method, Methods, 25, 402-408, doi: 10.1006/meth.2001.1262.
  27. Mizobuchi, H., Yamamoto, K., Tsutsui, S., Yamashita, M., Nakata, Y., Inagawa, H., Kohchi, C., and Soma, G. I. (2020) A unique hybrid characteristic having both pro- and anti-inflammatory phenotype transformed by repetitive low-dose lipopolysaccharide in C8-B4 microglia, Sci. Rep., 10, 8945, doi: 10.1038/s41598-020-65998-8.
  28. Hauss-Wegrzyniak, B., Vraniak, P. D., and Wenk, G. L. (2000) LPS-induced neuroinflammatory effects do not recover with time, Neuroreport, 11, 1759-1763, doi: 10.1097/00001756-200006050-00032.
  29. Tanaka, S., Ide, M., Shibutani, T., Ohtaki, H., Numazawa, S., Shioda, S., and Yoshida, T. (2006) Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats, J. Neurosci. Res., 83, 557-566, doi: 10.1002/jnr.20752.
  30. Huang, Z. B., Wang, H., Rao, X. R., Liang, T., Xu, J., Cai, X. S., and Sheng, G. Q. (2010) Effects of immune activation on the retrieval of spatial memory, Neurosci, Bull., 26, 355-364, doi: 10.1007/s12264-010-0622-z.
  31. Grigoryan, G. A., Weiss, I., and Feldon, I. (2010) Social isolation improves working memory at reversal but not primaty radial-arm learning in rats, Zhurn. Vysch. Nervn. Deyat., 60, 560-567.
  32. Cunningham, C., and Sanderson, D. J. (2008) Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory, Brain Behav. Immun., 22, 1117-1127, doi: 10.1016/j.bbi.2008.05.007.
  33. Zhu, B., Wang, Z. G., Ding, J., Liu, N., Wang, D. M., Ding, L. C., and Yang, C. (2014) Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus, Exp. Ther. Med., 7, 750-754, doi: 10.3892/etm.2014.1479.
  34. Sparkman, N. L., Buchanan, J. B., Heyen, J. R., Chen, J., Beverly, J. L., and Johnson, R. W. J. (2006) Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers, Neuroscience, 26, 10709-10716, doi: 10.1523/JNEUROSCI.3376-06.2006.
  35. Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., and de Vries, E. F. J. (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation, Mol. Neurobiol., 56, 3295-3312, doi: 10.1007/s12035-018-1283-6.
  36. Elkabes, S., Peng, L., and Black, I. B. (1998) Lipopolysaccharide differentially regulates microglial trk receptors and neurotrophin expression, J. Neurosci Res., 54, 117-122, doi: 10.1002/(SICI)1097-4547(19981001)54:1<117::AID-JNR12>3.0.CO;2-4.
  37. Miwa, T., Furukawa, S., Nakajima, K., Furukawa, Y., and Kohsaka, S. (1997) Lipopolysaccaride enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia, J. Neurosci. Res., 50, 1023-1029, doi: 10.1002/(SICI)1097-4547(19971215)50:6<1023::AID-JNR13>3.0.CO;2-5.
  38. Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y., and Zhu, L. (2019) Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice, Sci. Rep., 9, 5790, doi: 10.1038/s41598-019-42286-8.
  39. Kamdi, S. P., Raval, A., and Nakhate, K. T. (2021) Phloridzin attenuates lipopolysaccharide-induced cognitive impairment via antioxidant, anti-inflammatory and neuromodulatory activities, Cytokine, 139, 155408, doi: 10.1016/j.cyto.2020.155408.
  40. Chowdhury, A. A., Gawali, N. B., Munshi, R., and Juvekar, A. R. (2018) Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice, Metab. Brain Dis., 33, 681-691, doi: 10.1007/s11011-017-0147-5.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##