Resistom Streptomyces rimosus - a reservoir of resistance genes to aminoglycoside antibiotics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of aminoglycoside acetyltransferases in actinobacteria of the genus Streptomyces is an integral part of the study of soil bacteria as the main reservoir and possible source of drug resistance genes. Previously, in the strain Streptomyces rimosus ATCC 10970 (producing oxyteteracycline), which is resistant to most natural aminoglycoside antibiotics, we have identified and biochemically characterized 3 aminoglycoside phosphotransferases, which cause resistance to kanamycin, neomycin, paromomycin, streptomycin, and hygromycin B. In the presented work, it was shown that resistance to other AGs in this strain is associated with the presence of the enzyme aminoglycoside acetyltransferase, belonging to the AAC(2′) subfamily. Induction of the expression of the gene, designated by us as aac(2′)-If, in Escherichia coli cells determines resistance to a wide range of natural aminoglycoside antibiotics (neomycin, gentamicin, tobramycin, sisomycin, and paromomycin) and to an increase in the minimum inhibitory concentrations of these antibiotics.

About the authors

M. G Alekseeva

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: alekseevamg@mail.ru
119991 Moscow, Russia

N. N Rudakova

Vavilov Institute of General Genetics, Russian Academy of Sciences

119991 Moscow, Russia

A. V Ratkin

Vavilov Institute of General Genetics, Russian Academy of Sciences

119991 Moscow, Russia

D. A Mavletova

Vavilov Institute of General Genetics, Russian Academy of Sciences

119991 Moscow, Russia

V. N Danilenko

Vavilov Institute of General Genetics, Russian Academy of Sciences

119991 Moscow, Russia

References

  1. Darby, E. M., Trampari, E., Siasat, P., Gaya, M. S., Alav, I., Webber, M. A., and Blair, J. M. A. (2022) Molecular mechanisms of antibiotic resistance revisited, Nat. Rev. Microbiol., 21, 280-295, doi: 10.1038/s41579-022-00820-y.
  2. Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O., and Dantas, G. (2012) The shared antibiotic resistome of soil bacteria and human pathogens, Science, 337, 1107-1111, doi: 10.1126/science.1220761.
  3. Surette, M. D., and Wright, G. D. (2017) Lessons from the environmental antibiotic resistome, Annu. Rev. Microbiol., 71, 309-329, doi: 10.1146/annurev-micro-090816-093420.
  4. Ogawara, H. (2019) Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria, Molecules, 24, 3430, doi: 10.3390/molecules24193430.
  5. Ramirez, M. S., and Tolmasky, M. E. (2010) Aminoglycoside modifying enzymes, Drug. Resist. Updat., 13, 151-171, doi: 10.1016/j.drup.2010.08.003.
  6. Hotta, K. (2021) Basic and applied research on multiple aminoglycoside antibiotic resistance of actinomycetes: an old-timer's recollection, J. Ind. Microbiol. Biotechnol., 48, kuab059, doi: 10.1093/jimb/kuab059.
  7. Heinzel, P., Werbitzky, O., Distler, J., and Piepersberg, W. (1988) A second streptomycin resistance gene from Streptomyces griseus codes for streptomycin-3′′-phosphotransferase. Relationships between antibiotic and protein kinases, Arch. Microbiol., 150, 184-192, doi: 10.1007/BF00425160.
  8. Perry, J. A., Westman, E. L., and Wright, G. D. (2014) The antibiotic resistome: what's new? Curr. Opin. Microbiol., 21, 45-50, doi: 10.1016/j.mib.2014.09.002.
  9. Елизаров С. М., Алексеева M. Г., Новиков Ф. Н., Чилов Г. Г., Маслов Д. А., Штиль А. А., Даниленко В. Н. (2012) Идентификация сайтов фосфорилирования аминогликозидфосфотрансферазы VIII Streptomyces rimosus, Биохимия, 77, 1504-1512.
  10. Boyko, K. M., Gorbacheva, M. A., Korzhenevskiy, D. A., Alekseeva, M. G., Mavletova, D. A., Zakharevich, N. V., Elizarov, S. M., Rudakova, N. N., Danilenko, V. N., and Popov, V. O. (2016) Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation, Biochem. Biophys. Res. Commun., 477, 595-601, doi: 10.1016/j.bbrc.2016.06.097.
  11. Алексеева М. Г., Рудакова Н. Н., Захаревич Н. В., Мавлетова Д. А., Бойко К. М., Николаева А. Ю., Корженевский Д. А., Даниленко В. Н. (2018) Новый ген аминогликозидфосфотрансферазы aph(3′′)-Id из Streptomyces rimosus АТСС10970, кодирующий устойчивость к стрептомицину, Генетика, 54, 1228-1232, doi: 10.1134/S001667581810003X.
  12. Alekseeva, M. G., Boyko, K. M., Nikolaeva, A. Y., Mavletova, D. A., Rudakova, N. N., Zakharevich, N. V., Korzhenevskiy, D. A., Ziganshin, R. H., Popov, V. O., and Danilenko, V. N. (2019) Identification, functional and structural characterization of novel aminoglycoside phosphotransferase APH(3″)-Id from Streptomyces rimosus subsp. rimosus ATCC 10970, Arch. Biochem. Biophys., 671, 111-122, doi: 10.1016/j.abb.2019.06.008.
  13. Рудакова Н. Н., Алексеева М. Г., Захаревич Н. В., Мавлетова Д. А., Даниленко В. Н. (2020) Аминогликозидфосфотрансфераза AphSR2 Streptomyces rimosus ATCC 10970: зависимость устойчивости к антибиотикам от серин-треониновых протеинкиназ PkSR1 и PkSR2, Генетика, 56, 119-124.
  14. Algora-Gallardo, L., Schniete, J. K., Mark, D. R., Hunter, I. S., and Herron, P. R. (2021) Bilateral symmetry of linear streptomycete chromosomes, Microb. Genom., 7, 000692, doi: 10.1099/mgen.0.000692.
  15. Inoue, H., Nojima, H., and Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids, Gene, 96, 23-28, doi: 10.1016/0378-1119(90)90336-p.
  16. Mierendorf, R., Yeager, K., and Novy, R. (1994) Innovations, Newslett. Novagen, 1, 1-3.
  17. Bolanos-Garcia, V. M., and Davies, O. R. (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography, Biochim. Biophys. Acta, 1760, 1304-1313, doi: 10.1016/j.bbagen.2006.03.027.
  18. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and Hopwood, D. A. (2000) Practical Streptomyces Genetics, The John Innes Foundation, Norwich UK, 613 pp.
  19. Sambrook, J., Fritsch, E. E., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 479 pp.
  20. Barry, A. L., and Thornsberry, C. (1993) Susceptibility Tests: Diffusion Test Procedures (Murray, P., ed.) Washington D.C, ASM Press, pp. 112-137.
  21. Wiekler, M. A. (2015) CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard - Tenth Edition. CLSI document M07-A10, Wayne, PA: Clinical and Laboratory Standards Institute.
  22. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J. Mol. Biol., 215, 403-410, doi: 10.1016/S0022-2836(05)80360-2.
  23. Milburn, D., Laskowski, R. A., and Thornton, J. M. (1998) Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis, Protein Eng., 11, 855-859, doi: 10.1093/protein/11.10.855.
  24. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0, Bioinformatics, 23, 2947-2948, doi: 10.1093/bioinformatics/btm404.
  25. Hegde, S. S., Javid-Majd, F., and Blanchard, J. S. (2001) Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2′-N-acetyltransferase (AAC(2′)-Ic) from Mycobacterium tuberculosis, J. Biol. Chem., 276, 45876-45881, doi: 10.1074/jbc.M108810200.
  26. Sanz-García, F., Anoz-Carbonell, E., Pérez-Herrán, E., Martín, C., Lucía, A., Rodrigues, L., and Aínsa, J. A. (2019) Mycobacterial aminoglycoside acetyltransferases: a little of drug resistance, and a lot of other roles, Front. Microbiol., 10, 46, doi: 10.3389/fmicb.2019.00046.
  27. Bassenden, A. V., Dumalo, L., Park, J., Blanchet, J., Maiti, K., Arya, D. P., and Berghuis, A. M. (2021) Structural and phylogenetic analyses of resistance to next-generation aminoglycosides conferred by AAC(2′) enzymes, Sci. Rep., 11, 11614, doi: 10.1038/s41598-021-89446-3.
  28. Aínsa, J. A., Pérez, E., Pelicic, V., Berthet, F. X., Gicquel, B., and Martín, C. (1997) Aminoglycoside 2′-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2′)-Ic gene from Mycobacterium tuberculosis and the aac(2′)-Id gene from Mycobacterium smegmatis, Mol. Microbiol., 24, 431-441, doi: 10.1046/j.1365-2958.1997.3471717.x.
  29. D'Costa, V. M., McGrann, K. M., Hughes, D. W., and Wright, G. D. (2006) Sampling the antibiotic resistome, Science, 311, 374-377, doi: 10.1126/science.1120800.
  30. Даниленко В. Н., Пузынина Г. Г., Ломовская Н. Д. (1977) Множественная антибиотикорезистентность актиномицетов, Генетика, 13, 1831-1842.
  31. Потехин И. А., Даниленко В. Н. (1985) Детерминант устойчивости к канамицину Streptomyces rimosus: амплификация в составе хромосомы и обратимая генетическая нестабильность, Молекулярная биология, 19, 805-817.
  32. Davies, J., and Davies, D. (2010) Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev., 74, 417-433, doi: 10.1128/MMBR.00016-10.
  33. Crits-Christoph, A., Hallowell, H. A., Koutouvalis, K., and Suez, J. (2022) Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome, Gut Microbes, 14, 2055944, doi: 10.1080/19490976.2022.2055944.
  34. Lee, K., Raguideau, S., Sirén, K., Asnicar, F., Cumbo, F., Hildebrand, F., Segata, N., Cha, C. J., and Quince, C. (2023) Population-level impacts of antibiotic usage on the human gut microbiome, Nat. Commun., 14, 1191, doi: 10.1038/s41467-023-36633-7.
  35. Ellabaan, M. M. H., Munck, C., Porse, A., Imamovic, L., and Sommer, M. O. A. (2021) Forecasting the dissemination of antibiotic resistance genes across bacterial genomes, Nat. Commun., 12, 2435, doi: 10.1038/s41467-021-22757-1.
  36. MacNair, C. R., and Tan, M. W. (2023) The role of bacterial membrane vesicles in antibiotic resistance, Ann. N. Y. Acad. Sci., 1519, 63-73, doi: 10.1111/nyas.14932.
  37. Jeong, C. S., Hwang, J., Do, H., Cha, S. S., Oh, T. J., Kim, H. J., Park, H. H., and Lee, J. H. (2020) Structural and biochemical analyses of an aminoglycoside 2′-N-acetyltransferase from Mycolicibacterium smegmatis, Sci. Rep., 10, 21503, doi: 10.1038/s41598-020-78699-z.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».