Elastic losses and dispersion in dense and porous ferroelectrically “hard” piezoceramics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of a comparative study of elastic losses and dispersion in dense and porous ferroelectrically “hard” piezoceramics of the same chemical composition based on the lead zirconate titanate (PZT) system. To measure and analyze the real and imaginary parts of the complex elastic parameters, as well as their frequency dependences, we used a previously developed method for analyzing piezoresonance spectra for the fundamental and higher-order resonances of thickness oscillations mode of piezoceramic disks. Experimental samples of dense and porous piezoceramics were prepared using conventional sintering techniques and a modified pore-former burnout method. The study revealed regions of anomalous elastic dispersion in porous piezoceramics, caused by a change in the ratio of the wavelength of resonant oscillations of the piezoceramic element to the spatial heterogeneity scale of its porous microstructure as the frequency increases.

About the authors

I. A. Shvetsov

Research Institute of Physics, Southern Federal University

Rostov-on-Don, Russia

N. A. Shvetsova

Research Institute of Physics, Southern Federal University

Rostov-on-Don, Russia

E. I. Petrova

Research Institute of Physics, Southern Federal University

Rostov-on-Don, Russia

M. A. Lugovaya

Research Institute of Physics, Southern Federal University

Rostov-on-Don, Russia

M. G. Konstantinova

Research Institute of Physics, Southern Federal University

Rostov-on-Don, Russia

N. A. Kolpacheva

Don State Technical University

Rostov-on-Don, Russia

A. N. Rybyanets

Research Institute of Physics, Southern Federal University

Email: arybyanets@gmail.com
Rostov-on-Don, Russia

References

  1. Horchidan N., Ciomaga C.E., Frunza R.C., Capiani C., Galassi C., Mitoseriu L. A comparative study of hard/soft PZT-based ceramic composites // Ceram. Int. 2016. V. 42. № 7. P. 9125–9132. https://doi.org/10.1016/j.ceramint.2016.02.179
  2. Andryushin K.P., Andryushina I.N., Shilkina L.A., Nagornko A.V., Dudkina S.I., Pavelko A.A., Verbenko I.A., Reznichenko L.A. Features of the structure and macro responses in hard ferro piezoceramics based on the PZT system // Ceram. Int. 2018. V. 44. № 8. P. 18303–18310. https://doi.org/10.1016/j.ceramint.2018.07.042
  3. Uchino K. High-power piezoelectrics and loss mechanisms / Ed. by Uchino K. Amsterdam: Elsevier, 2017. P. 647–754. https://doi.org/10.1016/B978-0-08-102135-4.00017-5
  4. Safari A., Akdogan E.K., Leber J.D. Ferroelectric ceramics and composites for piezoelectric transducer applications // Jpn. J. Appl. Phys. 2022. V. 61. № SN. P. SN0801. https://doi.org/10.35848/1347–4065/ac8bdc
  5. Shvetsov I.A., Petrova E.I., Lugovaya M.A., Shvetsova N.A., Scherbinin S.A., Rybyanets A.N. Ferroeletrically Hard Porous Ceramics: Fabrication, Properties and Ultrasonic Transducer Applications / Ed. by Parinov I., Chang S.H., Gupta V. New York: Springer Proceedings in Physics, 2018. P. 33–47. https://doi.org/10.1007/978-3-319-78919-4_3
  6. Рыбянец А.Н., Наседкин А.В., Щербинин С.А., Петрова Е.И., Швецова Н.А., Швецов И.А., Луговая М.А. Конечно-элементное моделирование низкочастотных биморфных преобразователей для диагностики активации нефтяных скважин // Акуст. журн. 2017. Т. 63. № 6. С. 685–691. https://doi.org/10.7868/S03207917060120
  7. Turner B., Cranston D. A Review of High-Intensity Focused Ultrasound // Int. J. Transl. Med. 2024. V. 4. P. 197–207. https://doi.org/10.3390/ijtm4010011
  8. Nartov F.A., Williams R.P., Khokhlova V.A. Electronic focus steering capabilities of a diagnostic-type linear ultrasound array designed for high power therapy and its visualization // Acoust. Phys. 2023. V. 70. № 1. P. 165–174. https://doi.org/10.1134/S1063771023601292
  9. Zhang B., Yang Y., Fan X. Processing, microstructure, and properties of porous ceramic composites with directional channels // J. Mater. Sci. Technol. 2024. V. 168. P. 1–15. https://doi.org/10.1016/j.jmst.2023.04.039
  10. Shrivastava Sh., Rajak D.K., Joshi T., Singh D.K., Mondal D.P. Ceramic Matrix Composites: Classifications, Manufacturing, Properties, and Applications // Ceramics. 2024. V. 7. № 2. P. 652–679. https://doi.org/10.3390/ceramics7020043
  11. Zhang Sh., Malik B., Li J.-F., Rödel J. Lead-free ferroelectric materials: Prospective Applications // J. Mater. Res. 2021. V. 36. P. 985–995. https://doi.org/10.1557/s43578-021-00180-y
  12. Zhou X., Zhou K., Zhang D., Bowen C., Wang Q., Zhong J., Zhang Y. Perspective on porous piezoelectric ceramics to control internal stress // Nanoenergy Adv. 2022. V. 2. № 4. P. 269–290. https://doi.org/10.3390/nanoenergyadv2040014
  13. Ringgaard E., Lautzenhiser F., Bierregaard L., Zawada T., Molz E. Development of Porous Piezoceramics for Medical and Sensor Applications // Materials. 2015. V. 8. № 12. P. 8877–8889. https://doi.org/10.3390/ma8125487
  14. Rybyanets A.N. Porous piezoceramics: theory, technology, and properties // IEEE Trans. UFFC. 2011. V. 58. P. 1492–1507. https://doi.org/10.1109/TUFFC.2011.1968
  15. Yan M., Liu Sh., Xiao Z., Yuan X., Zhai D., Zhou K., Zhang D., Zhang G., Bowen Ch., Zhang Y. Evaluation of the pore morphologies for piezoelectric energy harvesting application // Ceram. Int. 2022. V. 48. P. 5017–5025. https://doi.org/10.1016/j.ceramint.2021.11.039
  16. Ma W., Zhou X., Gao H., Wang Ch., Tan H., Samart Ch., Wang J., An T.N., Yan Ch., Hu Y., Wang J., Zhang H. Structure-reinforced periodic porous piezoceramics for ultrahigh electromechanical response manufactured by vat photopolymerization // Additive Manufacturing. 2024. V. 93. P. 104446. https://doi.org/10.1016/j.addma.2024.104446
  17. Zhou X., Zhou K., Zhang D., Bowen Ch., Wang Q., Zhong J., Zhang Y. Perspective on Porous Piezoelectric Ceramics to Control Internal Stress // Nanoenergy Adv. 2022. V. 2. P. 269–290. https://doi.org/10.3390/nanoenergyadv2040014
  18. Rybyanets A.N. New methods and transducer designs for ultrasonic diagnostic and therapy / Ed. by Parinov I.A., Chang Sh.-H., Topolov V.Yu. NY: Springer Proceedings in Physics, 2016. P. 603–620. https://doi.org/10.1007/978-3-319-26324-3
  19. Park Y., Choi M., Uchino K. Loss Determination Techniques for Piezoelectrics: A Review // Actuators. 2023. V. 12. P. 213–235. https://doi.org/10.3390/act12050213
  20. Mezheritsky A.V. Elastic, Dielectric, and Piezoelectric Losses in Piezoceramics: How It Works All Together // IEEE Trans. UFFC. 2004. V. 50. P. 695–707. https://doi.org/10.1109/TUFFC.2004.1304268
  21. Gao Y., Xian X., Chen Y., Suo Zh, Xu J., Yang Z. Determination of elastic loss of piezoelectric materials by impedance curve fitting using intelligent algorithms // Phys. Scr. 2024. V. 99. P. 056002. https://doi.org/10.1088/1402-4896/ad347e
  22. Lugovaya M.A., Shvetsov I.A., Shvetsova N.A., Nasedkin A.V., Rybyanets A.N. Elastic Losses and Dispersion in Porous Piezoceramics // Ferroelectrics. 2021. V. 571. P. 263–267. https://doi.org/10.1080/00150193.2020.1736909
  23. Shvetsova N.A., Shvetsov I.A., Petrova E.I., Makarev D.I., Marakhovsky M.A., Rybyanets A.N. Complex electromechanical parameters and microstructure peculiarities of PZT-type porous piezoceramics // Ferroelectrics. 2024. V. 618. P. 1454–1460. https://doi.org/10.1080/00150193.2024.2305586
  24. Shvetsov I.A., Lugovaya M.A., Konstantinova M.G., Abramov P.A., Petrova E.I., Shvetsova N.A., Rybyanets A.N. Dispersion characteristics of complex electromechanical parameters of porous piezoceramics // J. Adv. Diet. 2022. V. 12(02). 2160004. https://doi.org/10.1142/s20101352x21600043
  25. Rybyanets A.N., Shvetsov I.A., Shvetsova N.A., Marakhovsky M.A., Kolpacheva N.A. Microstructure, complex electromechanical parameters and dispersion characteristics of ferroelectrically "hard" piezoceramics // J. Adv. Diet. 2025. V. 15(04). 2540001 (5 pages). https://doi.org/10.1142/S20101352x25400016
  26. PRAP (Piezoelectric Resonance Analysis Program). TASI Technical Software Inc. www.tasitechnical.com (Дата обращения 17.03.2025 г.).
  27. Smits J.G. Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics // IEEE Trans. Sonics Ultrason. 1976. SU-23. P. 393–401. https://doi.org/10.1109/T-SU.1976.30898
  28. O'Donnell M., Jaynes E.T., Miller J.G. General relationship between ultrasonic attenuation and dispersion // J. Acoust. Soc. Am. 1978. V. 63. P. 1935–1938. https://doi.org/10.1121/1.381902
  29. O'Donnell M., Jaynes E.T., Miller J.G. Kramers-Kronig relationships between ultrasonic attenuation and phase velocity // J. Acoust. Soc. Am. 1981. V. 69. P. 696–701.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).