Elastic losses and dispersion in dense and porous ferroelectrically “hard” piezoceramics
- Autores: Shvetsov I.A.1, Shvetsova N.A.1, Petrova E.I.1, Lugovaya M.A.1, Konstantinova M.G.1, Kolpacheva N.A.2, Rybyanets A.N.1
-
Afiliações:
- Research Institute of Physics, Southern Federal University
- Don State Technical University
- Edição: Volume 71, Nº 5 (2025)
- Páginas: 669–677
- Seção: ФИЗИЧЕСКАЯ АКУСТИКА
- URL: https://journals.rcsi.science/0320-7919/article/view/376006
- DOI: https://doi.org/10.7868/S3034500625050065
- ID: 376006
Citar
Resumo
Sobre autores
I. Shvetsov
Research Institute of Physics, Southern Federal UniversityRostov-on-Don, Russia
N. Shvetsova
Research Institute of Physics, Southern Federal UniversityRostov-on-Don, Russia
E. Petrova
Research Institute of Physics, Southern Federal UniversityRostov-on-Don, Russia
M. Lugovaya
Research Institute of Physics, Southern Federal UniversityRostov-on-Don, Russia
M. Konstantinova
Research Institute of Physics, Southern Federal UniversityRostov-on-Don, Russia
N. Kolpacheva
Don State Technical UniversityRostov-on-Don, Russia
A. Rybyanets
Research Institute of Physics, Southern Federal University
Email: arybyanets@gmail.com
Rostov-on-Don, Russia
Bibliografia
- Horchidan N., Ciomaga C.E., Frunza R.C., Capiani C., Galassi C., Mitoseriu L. A comparative study of hard/soft PZT-based ceramic composites // Ceram. Int. 2016. V. 42. № 7. P. 9125–9132. https://doi.org/10.1016/j.ceramint.2016.02.179
- Andryushin K.P., Andryushina I.N., Shilkina L.A., Nagornko A.V., Dudkina S.I., Pavelko A.A., Verbenko I.A., Reznichenko L.A. Features of the structure and macro responses in hard ferro piezoceramics based on the PZT system // Ceram. Int. 2018. V. 44. № 8. P. 18303–18310. https://doi.org/10.1016/j.ceramint.2018.07.042
- Uchino K. High-power piezoelectrics and loss mechanisms / Ed. by Uchino K. Amsterdam: Elsevier, 2017. P. 647–754. https://doi.org/10.1016/B978-0-08-102135-4.00017-5
- Safari A., Akdogan E.K., Leber J.D. Ferroelectric ceramics and composites for piezoelectric transducer applications // Jpn. J. Appl. Phys. 2022. V. 61. № SN. P. SN0801. https://doi.org/10.35848/1347–4065/ac8bdc
- Shvetsov I.A., Petrova E.I., Lugovaya M.A., Shvetsova N.A., Scherbinin S.A., Rybyanets A.N. Ferroeletrically Hard Porous Ceramics: Fabrication, Properties and Ultrasonic Transducer Applications / Ed. by Parinov I., Chang S.H., Gupta V. New York: Springer Proceedings in Physics, 2018. P. 33–47. https://doi.org/10.1007/978-3-319-78919-4_3
- Рыбянец А.Н., Наседкин А.В., Щербинин С.А., Петрова Е.И., Швецова Н.А., Швецов И.А., Луговая М.А. Конечно-элементное моделирование низкочастотных биморфных преобразователей для диагностики активации нефтяных скважин // Акуст. журн. 2017. Т. 63. № 6. С. 685–691. https://doi.org/10.7868/S03207917060120
- Turner B., Cranston D. A Review of High-Intensity Focused Ultrasound // Int. J. Transl. Med. 2024. V. 4. P. 197–207. https://doi.org/10.3390/ijtm4010011
- Nartov F.A., Williams R.P., Khokhlova V.A. Electronic focus steering capabilities of a diagnostic-type linear ultrasound array designed for high power therapy and its visualization // Acoust. Phys. 2023. V. 70. № 1. P. 165–174. https://doi.org/10.1134/S1063771023601292
- Zhang B., Yang Y., Fan X. Processing, microstructure, and properties of porous ceramic composites with directional channels // J. Mater. Sci. Technol. 2024. V. 168. P. 1–15. https://doi.org/10.1016/j.jmst.2023.04.039
- Shrivastava Sh., Rajak D.K., Joshi T., Singh D.K., Mondal D.P. Ceramic Matrix Composites: Classifications, Manufacturing, Properties, and Applications // Ceramics. 2024. V. 7. № 2. P. 652–679. https://doi.org/10.3390/ceramics7020043
- Zhang Sh., Malik B., Li J.-F., Rödel J. Lead-free ferroelectric materials: Prospective Applications // J. Mater. Res. 2021. V. 36. P. 985–995. https://doi.org/10.1557/s43578-021-00180-y
- Zhou X., Zhou K., Zhang D., Bowen C., Wang Q., Zhong J., Zhang Y. Perspective on porous piezoelectric ceramics to control internal stress // Nanoenergy Adv. 2022. V. 2. № 4. P. 269–290. https://doi.org/10.3390/nanoenergyadv2040014
- Ringgaard E., Lautzenhiser F., Bierregaard L., Zawada T., Molz E. Development of Porous Piezoceramics for Medical and Sensor Applications // Materials. 2015. V. 8. № 12. P. 8877–8889. https://doi.org/10.3390/ma8125487
- Rybyanets A.N. Porous piezoceramics: theory, technology, and properties // IEEE Trans. UFFC. 2011. V. 58. P. 1492–1507. https://doi.org/10.1109/TUFFC.2011.1968
- Yan M., Liu Sh., Xiao Z., Yuan X., Zhai D., Zhou K., Zhang D., Zhang G., Bowen Ch., Zhang Y. Evaluation of the pore morphologies for piezoelectric energy harvesting application // Ceram. Int. 2022. V. 48. P. 5017–5025. https://doi.org/10.1016/j.ceramint.2021.11.039
- Ma W., Zhou X., Gao H., Wang Ch., Tan H., Samart Ch., Wang J., An T.N., Yan Ch., Hu Y., Wang J., Zhang H. Structure-reinforced periodic porous piezoceramics for ultrahigh electromechanical response manufactured by vat photopolymerization // Additive Manufacturing. 2024. V. 93. P. 104446. https://doi.org/10.1016/j.addma.2024.104446
- Zhou X., Zhou K., Zhang D., Bowen Ch., Wang Q., Zhong J., Zhang Y. Perspective on Porous Piezoelectric Ceramics to Control Internal Stress // Nanoenergy Adv. 2022. V. 2. P. 269–290. https://doi.org/10.3390/nanoenergyadv2040014
- Rybyanets A.N. New methods and transducer designs for ultrasonic diagnostic and therapy / Ed. by Parinov I.A., Chang Sh.-H., Topolov V.Yu. NY: Springer Proceedings in Physics, 2016. P. 603–620. https://doi.org/10.1007/978-3-319-26324-3
- Park Y., Choi M., Uchino K. Loss Determination Techniques for Piezoelectrics: A Review // Actuators. 2023. V. 12. P. 213–235. https://doi.org/10.3390/act12050213
- Mezheritsky A.V. Elastic, Dielectric, and Piezoelectric Losses in Piezoceramics: How It Works All Together // IEEE Trans. UFFC. 2004. V. 50. P. 695–707. https://doi.org/10.1109/TUFFC.2004.1304268
- Gao Y., Xian X., Chen Y., Suo Zh, Xu J., Yang Z. Determination of elastic loss of piezoelectric materials by impedance curve fitting using intelligent algorithms // Phys. Scr. 2024. V. 99. P. 056002. https://doi.org/10.1088/1402-4896/ad347e
- Lugovaya M.A., Shvetsov I.A., Shvetsova N.A., Nasedkin A.V., Rybyanets A.N. Elastic Losses and Dispersion in Porous Piezoceramics // Ferroelectrics. 2021. V. 571. P. 263–267. https://doi.org/10.1080/00150193.2020.1736909
- Shvetsova N.A., Shvetsov I.A., Petrova E.I., Makarev D.I., Marakhovsky M.A., Rybyanets A.N. Complex electromechanical parameters and microstructure peculiarities of PZT-type porous piezoceramics // Ferroelectrics. 2024. V. 618. P. 1454–1460. https://doi.org/10.1080/00150193.2024.2305586
- Shvetsov I.A., Lugovaya M.A., Konstantinova M.G., Abramov P.A., Petrova E.I., Shvetsova N.A., Rybyanets A.N. Dispersion characteristics of complex electromechanical parameters of porous piezoceramics // J. Adv. Diet. 2022. V. 12(02). 2160004. https://doi.org/10.1142/s20101352x21600043
- Rybyanets A.N., Shvetsov I.A., Shvetsova N.A., Marakhovsky M.A., Kolpacheva N.A. Microstructure, complex electromechanical parameters and dispersion characteristics of ferroelectrically "hard" piezoceramics // J. Adv. Diet. 2025. V. 15(04). 2540001 (5 pages). https://doi.org/10.1142/S20101352x25400016
- PRAP (Piezoelectric Resonance Analysis Program). TASI Technical Software Inc. www.tasitechnical.com (Дата обращения 17.03.2025 г.).
- Smits J.G. Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics // IEEE Trans. Sonics Ultrason. 1976. SU-23. P. 393–401. https://doi.org/10.1109/T-SU.1976.30898
- O'Donnell M., Jaynes E.T., Miller J.G. General relationship between ultrasonic attenuation and dispersion // J. Acoust. Soc. Am. 1978. V. 63. P. 1935–1938. https://doi.org/10.1121/1.381902
- O'Donnell M., Jaynes E.T., Miller J.G. Kramers-Kronig relationships between ultrasonic attenuation and phase velocity // J. Acoust. Soc. Am. 1981. V. 69. P. 696–701.
Arquivos suplementares

