Gross primary production estimation of the Leningrad region ecosystem using OCO-2 datasets
- Авторлар: Foka S.C.1, Makarova M.V.1, Abakumov E.V.1, Ionov D.V.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: № 3 (2025)
- Беттер: 37-46
- Бөлім: ИСПОЛЬЗОВАНИЕ КОСМИЧЕСКОЙ ИНФОРМАЦИИ О ЗЕМЛЕ
- URL: https://journals.rcsi.science/0205-9614/article/view/328241
- DOI: https://doi.org/10.7868/S3034540525030048
- ID: 328241
Дәйексөз келтіру
Аннотация
Авторлар туралы
S. Foka
St. Petersburg State University
Email: s.foka@spbu.ru
St. Petersburg, Russia
M. Makarova
St. Petersburg State UniversitySt. Petersburg, Russia
E. Abakumov
St. Petersburg State UniversitySt. Petersburg, Russia
D. Ionov
St. Petersburg State UniversitySt. Petersburg, Russia
Әдебиет тізімі
- Дюкарев Е.А., Семенов С.П.Численное моделирование биогеохимических циклов углерода в болотных экосистемах // Известия АлтГУ. Математика и механика. 2022. № 4 (126). С. 104‒109.doi: 10.14258/izvasu(2022)4-16.
- Карбоновые полигоны Российской Федерацииhttps://carbon-polygons.ru/(дата обращения 12.11.2024)
- Лагутин А.А., Мордвин Е.Ю., Волков Н.В.Оценки валовой первичной продукции для территории юга Западной Сибири в 2014‒2021 гг. по данным орбитальных карбоновых обсерваторий OCO-2 И OCO-3 // Материалы XXVIII Международного симпозиума “Оптика атмосферы и океана. Физика атмосферы”. [Электронный ресурс]. Томск: Изд-во ИОА СО РАН, 2022. С. B-328-B-331. doi: 10.56820/OAOPA.2022.39.85.001.
- Annual report: Provisional State of the Global Climate 2023,https://wmo.int/files/provisional-state-of-global-climate-2023(дата обращения 26.02.2024)
- Bo Y., Li X., Liu K., Wang S., Zhang H., Gao X., Zhang X.Three decades of gross primary production (GPP) in China: variations, trends, attributions, and prediction inferred from multiple datasets and time series modeling // Remote Sens. 2022. V. 14. № 11:2564.doi: 10.3390/rs14112564.
- Chen A., Mao J., Ricciuto D., Lu D., Xiao J., Li X., Thornton P.E., Knapp A.K.Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere // Glob. Chang. Biol. 2021. V. 27. P. 5186–5197.doi: 10.1111/gcb.15775.
- Cho S., Kang M., Ichii K., Kim J., Lim J.H., Chun J.H., Park C.W., Kim H.S., Choi S.W., Lee S.H., Indrawati Y.M., Kim J.Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology // Agric. For Meteorol. 2021. V. 311. № 108653.DOI: 10.1016/ j.agrformet.2021.108653.
- Cui Y., Xiao X., Zhang Y., Dong J., Qin Y., Doughty R.B., Zhang G., Wang J., Wu X., Qin Y., Zhou S., Joiner J., Moore B.Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years // Sci. Rep. 2017. V. 7. № 14963.doi: 10.1038/s41598-017-13783-5.
- Doughty R., Kurosu T.P., Parazoo N., Köhler P., Wang Y., Sun Y., Frankenberg C.Global GOSAT, OCO-2, and OCO-3 solar-induced chlorophyll fluorescence datasets // Earth. Syst. Sci. Data. 2022. V. 14. P. 1513–1529.doi: 10.5194/essd-14-1513-2022.
- Duveiller G., Filipponi F., Walther S., Köhler P., Frankenberg C., Guanter L., Cescatti A.A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity // Earth. Syst. Sci. Data. 2022. V. 12. P. 1101–1116.doi: 10.5194/essd-12-1101-2020.
- Foka S.C., Makarova M.V., Poberovsky A.V., Ionov D.V., Abakumov E.V.Analysis of mixing ratios of greenhouse carbon-containing gases at the atmospheric monitoring station of St. Petersburg State University // Atmos. Ocean. Opt. 2024. V. 37. P. 74–81.doi: 10.1134/S1024856023700094.
- Goulden M.L., Mcmillan A.M.S., Winston G.C., Rocha A.V., Manies K.L., Harden J.W., Bond-Lamberty B.P.Patterns of NPP, GPP, respiration, and NEP during boreal forest succession // Glob. Chang. Biol. 2011. V. 17. P. 855‒871.doi: 10.1111/j.1365-2486.2010.02274.x.
- Guanter L., Bacour C., Schneider A., Aben I., van Kempen T.A., Maignan F., Retscher C., Köhler P., Frankenberg C., Joiner J., Zhang Y.The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission // Earth. Syst. Sci. Data. 2021. V. 13. P. 5423–5440.doi: 10.5194/essd-13-5423-2021.
- He L., Byrne B., Yin Y., Liu J., Frankenberg C.Remote-sensing derived trends in gross primary production explain increases in the CO2seasonal cycle amplitude // Global Biogeochemical Cycles. 2022. V. 36. № e2021GB007220. doi: 10.1029/2021GB007220.
- Ji Y., Zeng S., Liu X., Xia J.Mutual inhibition effects of elevated CO2and climate change on global forest GPP // Environ. Rese. 2024. V. 252. № 119145.DOI: 10.1016/ J.Envres.2024.119145.
- Köehler P., Frankenberg C., Magney T.S., Guanter L., Joiner J., Landgraf J.Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2 // Geophys. Res. Lett. 2018. V. 45. P. 10456–10463.doi: 10.1029/2018GL079031.
- Launiainen S., Katul G.G., Leppä K., Kolari P., AslanT., Grönholm T., Korhonen L., Mammarella I., Vesala T.Does growing atmospheric CO2 explain increasing carbon sink in a boreal coniferous forest? // Glob. Chang. Biol. 2022. V. 28. P. 2910–2929. doi: 10.1111/gcb.16117.
- Li X., Xiao J.TROPOMI observations allow for robust exploration of the relationship between solar- induced chlorophyll fluorescence and terrestrial gross primary production // Remote Sens. of Environ. 2022. V. 268. № 112748.doi: 10.1016/j.rse.2021.112748.
- Liao Z., Zhou B., Zhu J., Jia H., Fei X.A critical review of methods, principles and progress for estimating the gross primary productivity of terrestrial ecosystems // Front. Environ. Sci. 2023. V. 11. № 1093095.doi: 10.3389/fenvs.2023.1093095.
- Lin S., Huang X., Zheng Y., Zhang X., Yuan W.An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution // Remote Sensing. 2022.V. 14(11). № 2651. doi: 10.3390/rs14112651.
- Makarova M.V., Abakumov E.V., Shevchenko E.V., Paramonova N.N., Pakhomova N.V., Lvova N.A., Vetrova M.A., Foka S.C., Guzov Iu.N., Ivakhov V.M., Ionov D.V., Khoroshavin A.V., Kostsov V.S., Mikushev S.V., Mikhailov E.F., Pavlovsky A.A., Titov V.O.From carbon polygon to carbon farm: The potential and ways of developing the sequestration carbon industry in the Leningrad Region and St. Petersburg // Vestnik of Saint Petersburg University. Earth Sciences. 2023. V. 68(1). P. 82–102. doi: 10.21638/spbu07.2023.105.
- Mamkin V., Varlagin A., Yaseneva I., Kurbatova J.Response of spruce forest ecosystem CO2fluxes to inter-annual climate anomalies in the Southern Taiga // Forests. 2022. V. 13. № 1019. doi: 10.3390/f13071019.
- NOAA /ESRL [Electronic resource] Trends in Atmospheric Carbon Dioxide (CO2)https://gml.noaa.gov/ccgg/trends/gl_trend.html(дата обращения 15.05.2024).
- OCO-2 Science Team/Michael Gunson, Annmarie Eldering. OCO-2 Level 2 bias-corrected solar-induced fluorescence and other select fields from the IMAP-DOAS algorithm aggregated as daily files, Retrospective processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2020.https://doi.org/10.5067/XO2LBBNPO010 (дата обращения 21.12.2023)
- Schacherl T.Evaluating Drought Impacts on Ecosystem Water Use Efficiency of Three Different Boreal Forest Sites // Master thesis, Swedish University of Agricultural Sciences. 2021. https://stud.epsilon.slu.se/17329/1/schacherl_t_211024.pdf
- Thoning K.W., Tans P.P., Komhyr W.D.Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985 // J. Geophys. Res. 1989. V. 94. P. 8549–8565.
- Wang M., Zhang L.Synchronous Changes of GPP and Solar-Induced Chlorophyll Fluorescence in a Subtropical Evergreen Coniferous Forest // Plants. 2023.V. 12(11). № 2224.doi: 10.3390/plants12112224.
- Wild B., Teubner I., Moesinger L., Zotta R-M., Forkel M., van der Schalie R., Sitch S., Dorigo W.VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing // Earth Syst. Sci. Data. 2022. V. 14. P. 1063–1085.doi: 10.5194/essd-14-1063-2022.
- WMO Greenhouse Gas Bulletin No. 19. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2022. 2023. https://library.wmo.int/idurl/4/68532(дата обращения 26.11.2023)
- Xiao J., Zhuang Q., Law B.E., Baldocchi D.D., Chen J., Richardson A.D. et al.Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations // Agric. For Meteorol. 2011. V. 151. P. 60‒69.doi: 10.1016/j.agrformet.2010.09.002.
Қосымша файлдар
