Ашық рұқсат Ашық рұқсат  Рұқсат жабық Рұқсат берілді  Рұқсат жабық Тек жазылушылар үшін

№ 4 (2025)

Мұқаба

Бүкіл шығарылым

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

ИСПОЛЬЗОВАНИЕ КОСМИЧЕСКОЙ ИНФОРМАЦИИ О ЗЕМЛЕ

Registering Changes in the Prognostic Parameters of the 2024 Kamchatka M = 5.0–7.0 Earthquakes from Space

Bondur V., Tsidilina M., Efremycheva E., Voronova O., Gaponova M.

Аннотация

Satellite data were analyzed to identify changes that occurred in the lithosphere, atmosphere, and ionosphere before and during the earthquakes with magnitudes M = 5.0–7.0 in the Kuril-Kamchatka island arc region from May to August 2024. Anomalies in lineament systems, underlying surface temperature, outgoing long-wave radiation, and ionospheric total electron content were identified for these seismic events. It was established that these anomalies were evident as variations in the ratios of the total lengths of differently directed local lineaments 4–21 days before earthquakes, antiphase oscillations and changes in the temperature of the underlying surface, as well as outgoing long-wave radiation 8–10 days before earthquakes, and a sharp increase/decrease in the relative values of the ionospheric total electron content 1–10 days before earthquakes. Relationships were identified between changes in lineament systems, underlying surface temperature, outgoing long-wave radiation, and the ionospheric total electron content prior to the August 2024 M = 7.0 earthquake.
Earth Research from Space. 2025;(4):3-24
pages 3-24 views

Vegetation Response in the Tundra, Forest-Tundra, and Taiga Zones of Western Siberia to Climate Changes in 2000–2022 According to Satellite Data

Botvich I., Pisman T., Emelyanov D., Vysotskaya G., Dets A.

Аннотация

The work is devoted to the study of the vegetation response in the tundra, forest-tundra, and taiga zones of Western Siberia to climate change (temperature and precipitation) according to MODIS/Terra+Aqua satellite data for the period (2000–2022). The study is based on the maps of land cover (The MODIS Land Cover Type). Based on maps from 2001, 2010, and 2020, the areas of vegetation classes in tundra, forest-tundra, and taiga were determined. Multidirectional dynamics of the areas of the vegetation classes were noted. Positive trends in the long-term series of average summer (June, July, August) temperature and NDVI values of tundra, forest-tundra, and taiga vegetation for the period 2000–2022 were identified. A slight positive trend was noted in the long-term series of average annual precipitation in the territory of the grass tundra, and a negative trend in the territory of the shrub tundra. Positive trends in the long-term series of average summer NDVI values of vegetation and temperature were identified in the territory of permanent wetlands and forested swamps. Precipitation trends in wetland areas remained unchanged. For the periods (2001–2010) and (2010–2020), the following phenomena were revealed: the movement of the shrub tundra to the north, into the territory of the grass tundra, and the movement of the shrub tundra and northern woodland into the territory of the forest-tundra. The movement of the forest to the north, into the forest-tundra zone, was also noted.
Earth Research from Space. 2025;(4):25-36
pages 25-36 views

Forest Reclamation Mapping of Arid Pastures on the Example of the Eastern Regions of Stavropol Region

Kulik K., Yuferev V., Andreev S., Doroshenko V.

Аннотация

Forest reclamation mapping of arid pastures in the east of the Stavropol Region was carried out, for which the spatial position of soil contours, open sand massifs, sediment depressions and salt marshes, groundwater mineralization, humidification of the territory and other phytocological conditions was determined based on the decryption of remote sensing and open data. The mapping is based on the determination of landscape elements and pasture conditions using visual decoding of Sentinel-2 and Landsat-8, 9 satellite images, while the accuracy of decoding saline areas and open sands was more than 95%, which was confirmed by field verification. The contours of forest reclamation categories, provinces, subtypes, and types were obtained, on the basis of which the position of 25 allotments and their distribution in the landscapes of the studied areas were determined. Against the background of changing climatic conditions (increased frequency and intensification of dust storms, climate aridization), as well as the explosive growth of open sands and seed desertification, timely updating of forest reclamation maps is of great importance for the formation of an up-to-date set of measures to combat desertification and enrich arid pastures.
Earth Research from Space. 2025;(4):38-51
pages 38-51 views

МЕТОДЫ И СРЕДСТВА ОБРАБОТКИ И ИНТЕРПРЕТАЦИИ КОСМИЧЕСКОЙ ИНФОРМАЦИИ

The Problem of Automatic Identification of Leads In the Sea Ice Cover from Satellite Images

Dyment L., Ershova A., Bojkaya E., Kortikova K.

Аннотация

Based on expert detection of leads in the ice cover of the Laptev and East Siberian seas on optical satellite images, we have made verification of the freely available results of existing algorithms for automatic identification of sea ice leads. It is found that none of them can be used to provide data that allows calculating such characteristics of leads as orientation, length and spatial density. We propose to develop an algorithm for automatic detection of leads using a convolutional neural network trained on data from the AARI electronic archive of sea ice leads.
Earth Research from Space. 2025;(4):52-61
pages 52-61 views

Geoinformation Modelling of Changes in Natural Landscapes in the Southern Cryolithozone of Western Siberia Based on Landsat Satellite Images

Fakhretdinov A.

Аннотация

Currently, northern ecosystems are changing under the influence of climate warming, which makes it necessary to study their dynamics and predict their further development. The Nadym geocryological observation site landscapes was classified using the Support Vector Machine method with high accuracy (86–97 percent) based on Landsat satellite images from 2001, 2013, and 2023. Temporal sampling with selected landscapes (surface types) made it possible to determine changes in their area and to simulate the development of the area up to 2033 in the MOLUSCE 4.0 QGIS module based on the algorithm of artificial neural networks (multi-layer perceptron), taking into account geophysical influencing factors. It was revealed that the dynamics of landscapes is largely due to the periodic occurrence of fires. Analysis of the transition matrix showed the presence of local substitutions of flat shrub-grass-moss bogs with grass-shrub-moss-lichen peatlands. Forecasting for a 10-year period has demonstrated that, with the current trend, vegetation will recover on forest and peat burns with an increase in lichen abundance and a further smooth transition of a small proportion of bogs to peatlands, due to the processes of drainage and phytomass growth against the background of an increase in the surface atmospheric temperature.
Earth Research from Space. 2025;(4):62-72
pages 62-72 views

Lagrangian Analysis of Satellite Data for the Pacific Cod Biomass Estimation in the West Bering Sea Zone

Kulik V., Budyansky M., Uleysky M., Prants S.

Аннотация

Based on satellite altimetry data on the velocity of geostrophic currents for each day from 2000 to 2021, the trajectories of passive tracers distributed over a grid in the Bering Sea were calculated. The Lagrangian indicators, the length of the propagation paths of these particles (L) and the Lyapunov exponent (Λ), have been calculated for the month in the past prior to reaching the sites of scientific bottom trawling (BT). It is shown that the "random forest" machine learning method, among other bagging and boosting methods, best predicts the logarithm of the pacific cod density in scientific BT (t/km2) with Lagrangian indicators, describing more than 51% of the variance in the validation set. The standard vector autoregressive spatiotemporal model for calculating the dynamics of cod biomass in the West Bering Sea zone describes 6% less variance in identical testing, and the generalized additive model describes 20% less variance. All tested models in their optimal configurations included a significantly positive effect of L and a nonlinear effect of Λ in addition to the known dome-shaped effect of the depth of the BT site and the threshold effect of temperature of water at the bottom.
Earth Research from Space. 2025;(4):73-93
pages 73-93 views

ФИЗИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА

Method and Procedures of Aerospace Thermal Tomography of Near-Surface Areas of the Earth

Osadchuk A., Veselov Y., Ischuk I., Dolgov A., Rodionov V.

Аннотация

The article presents a method and procedures for developing aerospace monitoring tools for the underlying surface based on computer processing of data from optical-electronic means of unmanned aerial vehicles. The work considers a thermal model for the formation of a spatial distribution of a temperature field, an inverse problem of radiation thermal physics, and a problem of classifying objects based on multi-temporal multispectral images. The method and procedures for data processing have been tested in full-scale tests under various weather conditions for all seasons - several hundred flights of multi-rotor heavy-duty unmanned aerial vehicles equipped with optical-electronic means of remote monitoring have been conducted.
Earth Research from Space. 2025;(4):94-104
pages 94-104 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».