Gross primary production estimation of the Leningrad region ecosystem using OCO-2 datasets

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In order to implement measures to control climate-active gases and study the absorption potentialof greenhouse gases in Russia began the creation of carbon test sites, each of which is characterized by a representative ecosystem on the territory of our country. One of the goals of the Ladoga carbon test site, planned for creation in 2024–2025 on the territory of the Leningrad Region, is to study the processes of carbon dioxide absorption by the Northwest Russian ecosystem. For this reason, it is necessary to estimate gross primary production (GPP) and understand of the processes influencing on it. GPP for the Leningrad Region territory in 2014–2022 was determined using solar-induced chlorophyll fluorescence (SIF) data measured by the OCO-2 satellite equipment. It was found that GPP has an annual cycle with maximum in June–July. Moreover, GPP trend for 2015–2021 was positive, 0.08 ± 0.02 gCm–2day–1year–1. The estimated values of net ecosystem exchange (NEE) of the Ladoga carbon test site were 0.1–2.3 ktCO2year–1. The obtained results can be used for independent assessments of the absorption potential on the Russian territory.

About the authors

S. C. Foka

St. Petersburg State University

Email: s.foka@spbu.ru
St. Petersburg, Russia

M. V. Makarova

St. Petersburg State University

St. Petersburg, Russia

E. V. Abakumov

St. Petersburg State University

St. Petersburg, Russia

D. V. Ionov

St. Petersburg State University

St. Petersburg, Russia

References

  1. Annual report: Provisional State of the Global Climate2023,https://wmo.int/files/provisional-state-of-global-climate-2023(cited 26.02.2024)
  2. Bo Y., Li X., Liu K., Wang S., Zhang H., Gao X., Zhang X.Three decades of gross primary production (GPP) in China: variations, trends, attributions, and prediction inferred from multiple datasets and time series modeling // Remote Sens. 2022. V. 14. № 11:2564.doi: 10.3390/rs14112564.
  3. Chen A., Mao J., Ricciuto D., Lu D., Xiao J., Li X., Thornton P.E., Knapp A.K.Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere // Glob. Chang. Biol. 2021. V. 27. P. 5186–5197.doi: 10.1111/gcb.15775.
  4. Cho S., Kang M., Ichii K., Kim J., Lim J.H., Chun J.H., Park C.W., Kim H.S., Choi S.W., Lee S.H., Indrawati Y.M., Kim J.Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology // Agric. For Meteorol. 2021. V. 311. № 108653.doi: 10.1016/j.agrformet.2021.108653.
  5. Cui Y., Xiao X., Zhang Y., Dong J., Qin Y., Doughty R.B., Zhang G., Wang J., Wu X., Qin Y., Zhou S., Joiner J., Moore B.Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years // Sci. Rep. 2017. V. 7. № 14963.doi: 10.1038/s41598-017-13783-5.
  6. Doughty R., Kurosu T.P., Parazoo N., Köhler P., Wang Y., Sun Y., Frankenberg C.Global GOSAT, OCO-2, and OCO-3 solar-induced chlorophyll fluorescence datasets // Earth. Syst. Sci. Data. 2022. V. 14. P. 1513–1529.doi: 10.5194/essd-14-1513-2022.
  7. Duveiller G., Filipponi F., Walther S., Köhler P., Frankenberg C., Guanter L., Cescatti A.A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity // Earth. Syst. Sci. Data. 2022. V. 12. P. 1101–1116.doi: 10.5194/essd-12-1101-2020.
  8. Dyukarev E., Semenov S. Numerical Modeling of Biogeochemical Carbon Cycles in Swamp Ecosystems // Izvestiya of Altai State University. 2022. № 4 (126). P. 104‒109.doi: 10.14258/izvasu(2022)4-16.(In Russian).
  9. Foka S.C., Makarova M.V., Poberovsky A.V., Ionov D.V., Abakumov E.V.Analysis of mixing ratios of greenhouse carbon-containing gases at the atmospheric monitoring station of St. Petersburg State University // Atmos. Ocean. Opt. 2024. V. 37. P. 74–81.doi: 10.1134/S1024856023700094.
  10. Goulden M.L., Mcmillan A.M.S., Winston G.C., Rocha A.V., Manies K.L., Harden J.W., Bond-Lamberty B.P.Patterns of NPP, GPP, respiration, and NEP during boreal forest succession // Glob. Chang. Biol. 2011. V. 17. P. 855‒871.doi: 10.1111/j.1365-2486.2010.02274.x.
  11. Guanter L., Bacour C., Schneider A., Aben I., van Kempen T.A., Maignan F., Retscher C., Köhler P., Frankenberg C., Joiner J., Zhang Y.The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission // Earth. Syst. Sci. Data. 2021. V. 13. P. 5423–5440.doi: 10.5194/essd-13-5423-2021.
  12. He L., Byrne B., Yin Y., Liu J., Frankenberg C.Remote-sensing derived trends in gross primary production explain increases in the CO2 seasonal cycle amplitude // Global Biogeochemical Cycles. 2022. V. 36. № e2021GB007220. doi: 10.1029/2021GB007220.
  13. Ji Y., Zeng S., Liu X., Xia J.Mutual inhibition effects of elevated CO2and climate change on global forest GPP // Environ. Rese. 2024. V. 252. № 119145.doi: 10.1016/j.envres.2024.119145.
  14. Köehler P., Frankenberg C.,Magney T.S., Guanter L., Joiner J., Landgraf J.Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2 // Geophys. Res. Lett. 2018. V. 45. P. 10456–10463.doi: 10.1029/2018GL079031.
  15. Lagutin A.A., Mordvin E.Yu., Volkov N.V.Estimates of gross primary production for the territory of South Western Siberia in 2014-2021 based on data from the OCO-2 and OCO-3 orbital carbon observatories // Proceedings of the XХХ International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics”. [Electronic resource]. Tomsk: Optika Atmosfery i Okeana, 2022. P. B-328-B-331. doi: 10.56820/OAOPA.2022.39.85.001. (In Russian).
  16. Launiainen S., Katul G.G., Leppä K.,Kolari P., Aslan T., Grönholm T., Korhonen L.,Mammarella I., Vesala T.Does growing atmospheric CO2 explain increasing carbon sink in a boreal coniferous forest? // Glob. Chang. Biol. 2022. V. 28. P. 2910–2929. doi: 10.1111/gcb.16117.
  17. Li X., Xiao J.TROPOMI observations allow for robust exploration of the relationship between solar- induced chlorophyll fluorescence and terrestrial gross primary production // Remote Sens. of Environ. 2022. V. 268. № 112748.doi: 10.1016/j.rse.2021.112748.
  18. Liao Z., Zhou B., Zhu J., Jia H., Fei X.A critical review of methods, principles and progress for estimating the gross primary productivity of terrestrial ecosystems // Front. Environ. Sci. 2023. V. 11 № 1093095.doi: 10.3389/fenvs.2023.1093095.
  19. Lin S., Huang X., Zheng Y., Zhang X., Yuan W.An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution // Remote Sensing. 2022.V. 14(11). № 2651. doi: 10.3390/rs14112651.
  20. Makarova M.V., Abakumov E.V., Shevchenko E.V., Paramonova N.N., Pakhomova N.V., Lvova N.A., Vetrova M.A., Foka S.C., Guzov Iu.N., Ivakhov V.M., Ionov D.V., Khoroshavin A.V., Kostsov V.S., Mikushev S.V., Mikhailov E.F., Pavlovsky A.A., Titov V.O.From carbon polygon to carbon farm: The potential and ways of developing the sequestration carbon industry in the Leningrad Region and St. Petersburg // Vestnik of Saint Petersburg University. Earth Sciences. 2023. V. 68(1). P. 82–102. doi: 10.21638/spbu07.2023.105.
  21. Mamkin V., Varlagin A., Yaseneva I., Kurbatova J.Response of spruce forest ecosystem CO2 fluxes to inter-annual climate anomalies in the Southern Taiga // Forests. 2022. V. 13. № 1019. doi: 10.3390/f13071019.
  22. NOAA /ESRL [Electronic resource] Trends in Atmospheric Carbon Dioxide (CO2)https://gml.noaa.gov/ccgg/trends/gl_trend.html(дата обращения 15.05.2024)
  23. OCO-2 Science Team/Michael Gunson, Annmarie Eldering. OCO-2 Level 2 bias-corrected solar-induced fluorescence and other select fields from the IMAP-DOAS algorithm aggregated as daily files, Retrospective processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2020.https://doi.org/10.5067/XO2LBBNPO010 (cited 21.12.2023)
  24. Russian Federation’s Carbon measurement supersiteshttps://carbon-polygons.ru/(cited 12.11.2024).
  25. Schacherl T.Evaluating Drought Impacts on Ecosystem Water Use Efficiency of Three Different Boreal Forest Sites // Master thesis, Swedish University of Agricultural Sciences. 2021. https://stud.epsilon.slu.se/17329/1/schacherl_t_211024.pdf.
  26. Thoning K.W., Tans P.P., Komhyr W.D.Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985 // J. Geophys. Res. 1989. V. 94. P. 8549–8565.
  27. Wang M., Zhang L.Synchronous Changes of GPP and Solar-Induced Chlorophyll Fluorescence in a Subtropical Evergreen Coniferous Forest // Plants. 2023.V. 12(11). № 2224.doi: 10.3390/plants12112224.
  28. Wild B., Teubner I., Moesinger L., Zotta R-M., Forkel M., van der Schalie R., Sitch S., Dorigo W.VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing // Earth Syst. Sci. Data. 2022. V. 14. P. 1063–1085.doi: 10.5194/essd-14-1063-2022.
  29. WMO Greenhouse Gas Bulletin No. 19. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2022. 2023. https://library.wmo.int/idurl/4/68532(cited 26.11.2023)
  30. Xiao J., Zhuang Q., Law B.E., Baldocchi D.D., Chen J., Richardson A.D. et al.Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations // Agric. For Meteorol. 2011. V. 151. P. 60‒69.doi: 10.1016/j.agrformet.2010.09.002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».