Adjustment of Precipitation Restoration Algorithm According to MTVZA-GYa No. 2-2 Measurements
- 作者: Sazonov D.S.1
-
隶属关系:
- Space Research Institute of the Russian Academy of Sciences
- 期: 编号 6 (2024)
- 页面: 88-95
- 栏目: МЕТОДЫ И СРЕДСТВА ОБРАБОТКИ И ИНТЕРПРЕТАЦИИ КОСМИЧЕСКОЙ ИНФОРМАЦИИ
- URL: https://journals.rcsi.science/0205-9614/article/view/281648
- DOI: https://doi.org/10.31857/S0205961424060075
- EDN: https://elibrary.ru/RQQQWN
- ID: 281648
如何引用文章
详细
This paper presents an adjusted algorithm for restoring precipitation intensity over the ocean surface based on MTVZA-GYa No. 2-2 data. Based on the studies carried out on georeferencing data and convergence of the beams of the MTVZA-GYa antenna system, the weighting coefficients of the approximating functions for the scattering index and precipitation intensity were recalculated. A qualitative analysis of data for 2020 showed that precipitation intensity is restored adequately and correlate with measurements from other satellite instruments. Quantitative analysis showed that precipitation according to MTVZA-GYa data can be reconstructed over the entire range, however, only in the range up to 25 mm/h can reliable data be obtained with an accuracy of ~50%. In the precipitation range of more than 25 mm/h, there is not enough data for comparison and the statistics are unreliable. Based on the results of the qualitative and statistical comparison presented in the work, we can conclude that the accuracy of the precipitation intensity restoring based on the MTVZA-GYa instrument data is comparable to the accuracies for the AMSR-2 and SSMIS instruments.
全文:

作者简介
D. Sazonov
Space Research Institute of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sazonov_33m7@mail.ru
俄罗斯联邦, Moscow
参考
- Boldyrev V.V., Gorobets N.N., Il'gasov P.A., Nikitin O.V., Pantsov V.Yu., Prokhorov Yu.N., Strel'nikov N.I., Strel'tsov A.M., Chernyi I.V., Chernyavskii G.M., Yakovlev V.V. Satellite microwave scanner/sounder MTVZA-GY, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2008. Vol. 1. No 5. Pp. 243–248. (In Russian).
- Chernyavskii G.M., Mitnik L.M., Kuleshov V.P., Mitnik M.L., Chernyi I.V. Microwave sensing of the ocean, atmosphere and land surface from Meteor-M No. 2 data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. Vol. 15. No. 4. Pp. 78–100.
- Chinnawat Surussavadee, David H. Staelin, NPOESS Precipitation Retrievals Using the ATMS Passive Microwave Spectrometer, IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, VOL. 7, NO. 3, pp. 440–444. doi: 10.1109/LGRS.2009.2038614
- Ferraro R.R. Special sensor microwave imager derived global rainfall estimates for climatological applications // J. Geophys. Res. 1997. Vol. 102. NO. D14. Pp. 16,715–16,735.
- Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2019), GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [30.04.2022]. doi: 10.5067/GPM/IMERG/3B-HH/06
- Kummerow C.D., Randel D.L., Kulie M., Wang N.Y., Ferraro R., Munchak S.J., Petkovic V. The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, Vol. 32, NO 12, Pp. 2265–2280. DOI: https://doi.org/10.1175/JTECH-D-15-0039.1
- Sazonov D.S. Algorithm for reconstructing ocean surface temperature, near-surface wind speed and integral vapor content from MTVZA-GY data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2022. Vol. 19. No 1. Pp. 50–64. doi: 10.21046/2070-7401-2022-19-1-50-64 (In Russian)
- Sazonov D.S. Study the possibility of precipitation intensity recovery from MTVZA-GY measurements, Issled. Zemli iz kosmosa. 2023. No. 5. Pp. 23–35. doi: 10.31857/S020596142305007X, EDN: XQPADE (in Russian)
- Sazonov D.S., Sadovskii I.N. Geographical reference adjustment of MTVZA-GY frequency channels, Issled. Zemli iz kosmosa. 2024 (in print)
- Zabolotskikh E. and Chapron B. Validation of the New Algorithm for Rain Rate Retrieval from AMSR2 Data Using TMI Rain Rate Product. Advances in Meteorology Volume 2015, Article ID 492603, 12 pages http://dx.doi.org/10.1155/2015/492603
- Zhang R., Wang Z., Hilburn K.A. Tropical Cyclone Rainfall Estimates from FY-3B MWRI Brightness Temperatures Using the WS Algorithm. Remote Sens. 2018, 10, 1770. doi: 10.3390/rs10111770
补充文件
