Polyhedral Characteristics of Balanced and Unbalanced Bipartite Subgraph Problems


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the polyhedral properties of three problems of constructing an optimal complete bipartite subgraph (a biclique) in a bipartite graph. In the first problem, we consider a balanced biclique with the same number of vertices in both parts and arbitrary edge weights. In the other two problems we are dealing with unbalanced subgraphs of maximum and minimum weight with non-negative edges. All three problems are established to be NP-hard. We study the polytopes and the cone decompositions of these problems and their 1-skeletons. We describe the adjacency criterion in the 1-skeleton of the polytope of the balanced complete bipartite subgraph problem. The clique number of the 1-skeleton is estimated from below by a superpolynomial function. For both unbalanced biclique problems we establish the superpolynomial lower bounds on the clique numbers of the graphs of nonnegative cone decompositions. These values characterize the time complexity in a broad class of algorithms based on linear comparisons.

Авторлар туралы

V. Bondarenko

Demidov Yaroslavl State University

Хат алмасуға жауапты Автор.
Email: bond@bond.edu.yar.ru
Ресей, Yaroslavl, 150003

A. Nikolaev

Demidov Yaroslavl State University

Email: bond@bond.edu.yar.ru
Ресей, Yaroslavl, 150003

D. Shovgenov

Demidov Yaroslavl State University

Email: bond@bond.edu.yar.ru
Ресей, Yaroslavl, 150003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017