Polyhedral Characteristics of Balanced and Unbalanced Bipartite Subgraph Problems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the polyhedral properties of three problems of constructing an optimal complete bipartite subgraph (a biclique) in a bipartite graph. In the first problem, we consider a balanced biclique with the same number of vertices in both parts and arbitrary edge weights. In the other two problems we are dealing with unbalanced subgraphs of maximum and minimum weight with non-negative edges. All three problems are established to be NP-hard. We study the polytopes and the cone decompositions of these problems and their 1-skeletons. We describe the adjacency criterion in the 1-skeleton of the polytope of the balanced complete bipartite subgraph problem. The clique number of the 1-skeleton is estimated from below by a superpolynomial function. For both unbalanced biclique problems we establish the superpolynomial lower bounds on the clique numbers of the graphs of nonnegative cone decompositions. These values characterize the time complexity in a broad class of algorithms based on linear comparisons.

Sobre autores

V. Bondarenko

Demidov Yaroslavl State University

Autor responsável pela correspondência
Email: bond@bond.edu.yar.ru
Rússia, Yaroslavl, 150003

A. Nikolaev

Demidov Yaroslavl State University

Email: bond@bond.edu.yar.ru
Rússia, Yaroslavl, 150003

D. Shovgenov

Demidov Yaroslavl State University

Email: bond@bond.edu.yar.ru
Rússia, Yaroslavl, 150003

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2017