Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 50, № 1 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Статьи

Измерение упругого предела Гюгонио в керамике «Идеал»

Шевченко В.Я., Орыщенко А.С., Лепин В.Н., Лушников А.В., Алдошин С.М., Перевислов С.Н., Ломоносов И.В., Савиных А.С., Гаркушин Г.В., Разорёнов С.В., Мочалова В.М., Уткин А.В., Николаев Д.Н., Минцев В.Б.

Аннотация

Впервые исследована новая керамика «Идеал», композит алмаз — карбид кремния, полученная в реакционно-диффузионном процессе Тьюринга, что позволяет получать материалы с оптимальным набором физико-механических свойств. Отмечается упруго-хрупкое разрушение, связанное с распространением ударной волны в двухкомпонентной системе. Найден динамический предел упругости, определяемый свойствами карбида кремния, равный 13.4 ГПа. Проведены измерения ее динамического предела упругости и откольной прочности в области упругого деформирования. Определена ударная сжимаемость керамики до давления 625 ГПа.

Физика и химия стекла. 2024;50(1):3-11
pages 3-11 views

Кластерная самоорганизация интерметаллических систем. Новые кластеры-прекурсоры K15, K11, K6 для самосборки кристаллической структуры Yb72Sn46-tP118

Шевченко В.Я., Илюшин Г.Д.

Аннотация

С помощью компьютерных методов (пакет программ ToposPro) осуществлены комбинаторно-топологический анализ и моделирование самосборки кристаллических структур интерметалидов Yb72Sn46-tP118 (a = 11.076 Å, c = 36.933 Å, V = 4530.86 Å3, пр. группа P 4/mbm). Для кристаллической структуры Yb72Sn46-tP118 установлено 195 вариантов кластерного представления 3D атомной сетки с числом структурных единиц 5 (24 варианта), 6 (86 вариантов) и 7 (85 вариантов). Рассмотрен вариант наиболее быстрой самосборки с участием трех типов кластеров-прекурсоров, формирующих слои из октаэдров K6 = 0@6(Yb4Sn2) с симметрией g = 4/m, полиэдров K11 = = Sn@10(Yb8Sn2) с симметрией g = –1 и полиэдров K15 = Yb@14(Yb10Sn4) с симметрией g = 2 mm, а также атомов-спейсеров Yb и Sn. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь → слой → каркас.

Физика и химия стекла. 2024;50(1):12-20
pages 12-20 views

Кластерная самоорганизация интерметаллических систем. Новые кластеры-прекурсоры K6 и K3 для кристаллических структур семейства Sr12Mg20Ge20-oP52, Sr2LiInGe2-oP24, Sr2Mg2Ge2-oP12

Шевченко В.Я., Илюшин Г.Д.

Аннотация

С помощью компьютерных методов (пакет программ ToposPro) осуществлены комбинаторно-топологический анализ и моделирование самосборки кристаллических структур семейства Sr12Mg20Ge20-oP52 (a = 21.707 Å, b = 4.483 Å, c = 18.456 Å, V = 1795.88 Å3, Pnma), семейства Sr2LiInGe2-oP24 (a = 7.503, b=4.619, c = 17.473 Å, V= 605.63 Å3, Pnma), семейства Sr2Mg2Ge2-oP12 (a = 10.882 Å, c = 5.665 Å, V=670.8 Å3, Pnma). Для кристаллической структуры Sr12Mg20Ge20-oP52 установлены 17 вариантов кластерного представления 3D атомной сетки с числом структурных единиц 2 (5 вариантов), 3 (6 вариантов) и 4 (6 вариантов). Рассматривается вариант самосборки с участием тройных колец K3 = 0@3(SrMgGe) и K3 = 0@3(Mg2Ge) и сдвоенных тетраэдров K6 = 0@6(Sr2Mg2Ge2) с симметрией –1, образующих супраполиэдрический кластер-тример A из кластеров (SrMgGe)(Sr2Mg2Ge2)(SrMgGe) и кластер-тример B из кластеров (Mg2Ge)(Sr2Mg2Ge2)(Mg2Ge). Для кристаллической структуры (Sr2Li)2(InGe2)2-oP24 определены каркас-образующие полиэдры в виде сдвоенных тетраэдров K6 = 0@6(Sr2Mg2Ge2) и тройные кольца K3 = 0@3(SrMgGe). Для кристаллической структуры Sr2Mg2Ge2-oP12 определены каркас-образующие полиэдры в виде сдвоенных тетраэдров K6 = 0@6(Sr2Mg2Ge2). Реконструирован симметрийный и топологический код процессов самосборки 3D-структур из кластеров-прекурсоров в виде: первичная цепь → слой → каркас.

Физика и химия стекла. 2024;50(1):21-31
pages 21-31 views

Влияние элементного состава оптических стекол на количественные характеристики ослабления ими рентгеновского и гамма-излучения

Арбузов В.И.

Аннотация

Проведен анализ влияния химических элементов в составе оптических стекол на количественные характеристики ослабления ими рентгеновского и гамма-излучения. Предложена методика расчета массовых коэффициентов ослабления излучения (МКОИ) с энергией квантов от 0.2 до 3.0 МэВ для оксидов как компонентов стекол. Выявлены химические элементы и их оксиды в составе стекол, вносящие основной вклад в их значения линейного коэффициента ослабления излучения (ЛКОИ) с разной энергией квантов, Е. В области энергий квантов от 0.2 до примерно 1.0 МэВ сильное влияние (в порядке его уменьшения) на значение ЛКОИ стекол оказывают такие оксиды, как PbO, Ta2O5, Gd2O3, La2O3, BaO, Sb2O3 (из-за малой концентрации его вклад в ЛКОИ стекол обычно пренебрежимо мал), CdO, Nb2O5, ZrO2, Y2O3. Показано, что в области значений Е от 0.2 до примерно 1.0 МэВ элементы (или их оксиды) могут сильно отличаться друг от друга по значениям МКОИ, а стекла разных составов — по значениям их ЛКОИ, тогда как при Е > 1.0 МэВ и первые и вторые коэффициенты изменяются примерно одинаково при увеличении энергии квантов излучения.

Физика и химия стекла. 2024;50(1):32-42
pages 32-42 views

Зависимость микротвердости стекол от температуры

Тверьянович Ю.С.

Аннотация

Предложен метод расчета температурной зависимости микротвердости стекол в интервале температур от абсолютного нуля до температуры размягчения. Согласно модели, положенной в основу расчета, стекло переходит в пластическое состояние не только под действием температуры, но и под действием механических напряжений выше критической величины, соответствующей микротвердости. Поэтому при одновременном воздействии этих двух факторов стекло переходит в пластическое состояние в том случае, если сумма термической и механической энергии сетки стекла превышает критическую величину. Предложенный метод расчета опробован на примере органического стекла и двух наиболее важных для практики оксидных стекол: плавленого кварца и промышленного щелочно-силикатного стекла (soda lime silica glass).

Физика и химия стекла. 2024;50(1):43-54
pages 43-54 views

Влияние модификации пористого стекла оксидом цинка на его фотокаталитические свойства

Саратовский А.С., Гирсова М.А., Анфимова И.Н., Москалёв А.В., Мотайло Е.С., Антропова Т.В.

Аннотация

Разработана методика, и синтезированы наночастицы ZnO в пористых стеклах. Синтез проведен путем пропитки силикатных пористых стекол в водном растворе нитрата цинка и его последующего термолиза. Исследованы спектрально-люминесцентные свойства синтезированных композитов. Изучена способность наночастиц ZnO, сформированных в пористом стекле, к выработке активных форм кислорода при УФ-облучении.

Физика и химия стекла. 2024;50(1):55-61
pages 55-61 views

Теплостойкие электроизоляционные органосиликатные покрытия

Кочина Т.А., Буслаев Г.С., Смешко А.В.

Аннотация

Разработаны два состава теплостойких электроизоляционных органосиликатных покрытий с использованием в композициях тонкодисперсных стекловидных добавок — алюмоборосиликатного и ванадийсурьмофосфатного стекла. Покрытия имеют теплостойкость 700 и 800◦С и стойкость к резкому перепаду температуры от максимально допустимой до 20◦С троекратно. Определены электроизоляционные и физико-механические свойства покрытий.

Физика и химия стекла. 2024;50(1):62-68
pages 62-68 views

Синтез и исследование электролитных и электродных материалов в системах СeO2–Nd2O3 и Gd2O3–La2O3–SrO–Ni(Co)2O3–δ для среднетемпературных топливных элементов

Калинина М.В., Полякова И.Г., Мякин С.В., Хамова Т.В., Ефимова Л.Н., Кручинина И.Ю.

Аннотация

Методом совместной кристаллизации растворов азотнокислых солей с ультразвуковой обработкой синтезированы ксерогели, высокодисперсные мезопористые порошки состава: (СeO2)1-x(Nd2O3)x (x = 0,02; 0,05; 0,10); Gd1–xSrxCo0,5O3–δ (х = 0,1, 0,15, 0,2, 0, 25); Gd0.4Sr0.1Ni0,5O3–δ; Gd0,125La0,125Sr0,25Co0,5O3–δ — и на их основе получены нанокерамические материалы с кристаллической кубической структурой типа флюорита, орторомбической и тетрагональной структурой типа перовскита с ОКР ~55–90 нм (1300◦С) соответственно. Изучены физико-химические свойства полученной керамики; выявлено, что она обладает открытой пористостью 7–11% для состава: (СeO2)1-x(Nd2O3)x и 17–42% для материалов состава Gd1–xSrxCo0,5O3–δ, Gd0.4Sr0.1Ni0,5O3–δ и Gd0,125La0,125Sr0,25Co0,5O3–δ. Материалы на основе оксида церия обладают преимущественно ионным (числа переноса ионов ti = 0.71–0.89 в интервале 300–700◦С) типом электропроводности, обусловленным образованием подвижных кислородных вакансий при гетеровалентном замещении Се4+ на Nd3+; σ700ºС = 0.31·10–2 См/см. Твердые растворы на основе никелата и кобальтита лантана обладают смешанной электронно-ионной проводимостью, σ700ºС = 0.59∙10–1 См/см с числами переноса te = 0.92–0.99 ti = 0.08–0.01. Показана перспективность использования полученных керамических материалов в качестве твердооксидных электролитов и электродов среднетемпературных топливных элементов.

Физика и химия стекла. 2024;50(1):69-86
pages 69-86 views

Изготовление блочных катализаторов окисления монооксида углерода с использованием аддитивных технологий

Черемисина О.А., Сычёв М.М., Долгин А.С., Вишневская Т.А., Мальцева Н.В., Волобуева А.С.

Аннотация

Разработан способ получения первичных носителей катализаторов в форме блоков-сот с помощью аддитивных технологий. Разработан состав формовочного шликера, и оптимизированы его реологические свойства. Получены блочные катализаторы на основе первичных носителей, сформированных методом 3D-печати. Показано, что такие изделия имеют высокую производительность в процессе каталитического окисления СО кислородом воздуха и существует возможность ее дальнейшего увеличения за счет формирования каналов сложных геометрических форм, позволяющих интенсифицировать процессы тепло- и массообмена.

Физика и химия стекла. 2024;50(1):87-94
pages 87-94 views

Особенности морфологии и свойств дисперсных порошков ZnO, полученных полимерно-солевым синтезом при использовании поливинилпирролидона

Гаврилова М.А., Гаврилова Д.А., Шелеманов А.А., Евстропьев С.К.

Аннотация

В работе исследованы особенности морфологии и свойств дисперсных порошков ZnO, полученных полимерно-солевым синтезом при использовании поливинилпирролидона. Процессы термической эволюции материалов при синтезе порошков были исследованы методом дифференциально-термического и термогравиметрического анализа. Кристаллическая структура, морфология, люминесцентные и адсорбционные свойства синтезированных нанопорошков были изучены методами рентгенофазового и электронно-микроскопического анализов, оптической и люминесцентной спектроскопии. Установлено, что добавки поливинилпирролидона уменьшают размер формирующихся кристаллов ZnO и оказывают существенное влияние на морфологию, люминесцентные и адсорбционные свойства материалов.

Физика и химия стекла. 2024;50(1):95-107
pages 95-107 views

КРАТКОЕ СООБЩЕНИЕ

Сорбция ионов стронция на калий-титанатных нанотрубках, допированных магнием

Беспрозванных Н.В., Ершов Д.С., Морозов Н.А., Куриленко Л.Н., Кучаева С.К., Синельщикова О.Ю.

Аннотация

Исследовано взаимодействие водного раствора нитрата стронция с допированными магнием калий-титанатными нанотрубками, синтезированными методом соосаждения с последующей гидротермальной обработкой. Установлено, что после 2 ч выдержки в растворе при комнатной температуре наибольшую сорбционную емкость проявил состав с замещением 10 ат.% титана магнием. Полученные результаты показывают перспективность использования допированных магнием калий-титанатных нанотрубок в качестве адсорбентов ионов стронция из водных растворов.

Физика и химия стекла. 2024;50(1):108-112
pages 108-112 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».