Integration of a degenerate system of ODEs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven twoparameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.

About the authors

A. D. Bruno

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: abruno@keldysh.ru
Russian Federation, Moscow, 125047

V. F. Edneral

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: edneral@theory.sinp.msu.ru
Russian Federation, Moscow, 119991

References

  1. Bruno A.D. Analytical form of differential equations (I,II) // Trans. Moscow Math. Soc., 1971. V. 25. P. 131–288; 1972. V. 26. P. 199–239.
  2. Bruno A.D. Local Methods in Nonlinear Differential Equations. Berlin:Springer-Verlag, 1989. 348 p.
  3. Bruno A.D., Edneral V.F. On the integrability of a planar system of ODEs near a degenerate stationary point // Zap. Nauchn. Semin. Sankt-Peterburgskogo otdeleniya matematicheskogo instituta im. V.A. Steklova RAN (Proc. Sci. Semin. St. Petersburg Branch of the Steklov Mathematical Institute of the Russian Academy of Sciences). 2009. V. 373. P. 34–47.
  4. Edneral V.F., Romanovski V.G. Calculation of first integrals of a two-dimensional ODE system near a degenerate stationary point by computer algebra tools // Program. Comput. Software. 2011. V. 37. P. 99–103.
  5. Bruno A.D., Edneral V.F., Romanovski V.G. On New Integrals of the Algaba-Gamero-Garcia System // Proceedings of 19th International Workshop (CASC 2017). Eds. V.P.Gerdt et al. Lecture Notes in Computer Science, Springer, Switzerland, 2017. V. 10490. P. 40–50. doi: 10.1007/978-3-319-66320-3_4 .
  6. Gutnik S.A., Sarychev V.A. Symbolic-analytic methods for studying equilibrium orientations of a satellite on a circular orbit // Program. Comput. Software. 2021. V. 47. P. 119–123.
  7. Bruno A.D., Edneral V.F. Normal forms and integrability of ODE systems // Program. Comput. Software. 2006. V. 32. P. 139–144.
  8. Liénard A. Etude des oscillations entretenues // Revue générale de l’électricité. 1928. V. 23. P. 901–912 and 946–954.
  9. Cherkas L.A. Conditions for a Liénard equation to have a center, Differential Equations. 1976. V. 12. № 2. P. 292–298.
  10. Edneral V.F. Integrable Cases of the Polynomial Liénard-type Equation with Resonance in the Linear Part // Mathematics in Computer Science, 2023. V. 17. № 19. doi: 10.1007/s11786-023-00567-6 .
  11. Bautin N.N. On the number of limit cycles which appear with the variation of the coefficients from an equilibrium point of focus or center type // AMS Transl. Ser. I. 1962. V. 5. P. 396–414.
  12. Bruno A.D., Edneral V.F. Algorithmic analysis of local integrability // Dokl. Math. 2009. V. 79. № 1. P. 48–52.
  13. Algaba A., Gamero E., Garcia C. The integrability problem for a class of planar systems // Nonlinearity, 2009. V. 22. P. 395–420.
  14. Bruno A.D. Power Geometry in Algebraic and Differential Equations // Elsevier Science, Amsterdam, 2000. 348 p.
  15. Edneral V.F., Khanin R. Application of the resonant normal form to high-order nonlinear odes using MATHEMATICA // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003. V. 502. № 2–3. P. 643–645.
  16. Hilbert D. Über die Theorie der algebraischen Formen // Mathematische Annalen, 1890. V. 36. P. 473–534.
  17. Malykh M.D. On Application of M.N. Lagutinski Method to Integration of Differential Equations in Symbolic Form. Part 1 // Discrete and Continuous Models and Applied Computational Science, 2017. V. 25. № 2. P. 103–112. doi: 10.22363/2312-9735-2017-25-2-103-112 .
  18. Romanovski V.G., Shafer D.S. The Center and Cyclicity Problems: A Computational Algebra Approach // Birkhüser, Boston, 2009. 330 p.
  19. Equations from condition A for the 13th and 26th orders. https://disk.yandex.ru/d/-R1MKEiZz2vWeA..
  20. Factorized equation of condition A of the 19th order. https://disk.yandex.ru/i/U5GS1P-WPe8ZFg.
  21. Factorized condition A of the 27th order. https://disk.yandex.ru/i/fWHaojf5vM17uA.
  22. Edneral V.F., Khrustalev, O.A. Package for reducing ordinary differential equations to normal form // Program. Comput. Software. 1992. V. 18. № 5. P. 234–239.
  23. Bateman H., Erdelyi A. Higher Transcendental Functions, McGraw-Hill, 1953. V. I.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies