Fuzzy measure on p-adic balls defined on a finite number set

Cover Page

Cite item

Full Text

Abstract

The article explores an approach to constructing a fuzzy measure on p-adic balls that does not require the direct specification of the measure density. The relationships necessary for determining this measure for an arbitrary subset of a bounded numerical set, represented as a set of p-adic balls, are proven. Uniform and non-uniform fuzzy measures are considered. An algorithm for determining the fuzzy measure on p-adic balls is proposed. Examples of calculating this measure are provided.

Full Text

1. ВВЕДЕНИЕ

Для практического моделирования сложных энергетических ландшафтов, представляемых скалярными полями, был предложен эффективный подход на основе формализации расположения энергетических бассейнов [1]. Данные бассейны предопределяют иерархическую структуру рассматриваемого пространства X. В скалярном поле каждой точки пространства (как правило, X=Rn, где R — множество действительных чисел), ставится в соответствие скалярная величина v(x): XR, которая может отражать уровень энергии в рассматриваемой точке. В условиях неопределенности значение уровня энергии соответствующего энергетического бассейна может быть описано в виде величины, пропорциональной значению нечеткой меры подмножества пространства X [2]. Исходные данные в этом случае могут быть представлены в виде сужденийS есть P [3], где S — субъект суждения (понятие, о котором что-либо утверждается), P — предиката суждения (то, что утверждается о субъекте). Например, “Энергия (S) в рассматриваемом энергетическом бассейне возможно (есть) высокая (P)”. Нечеткая мера g(): 2 X [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaeyyXICTaaiykaiaacQ dacaaIYaWdamaaCaaaleqabaWdbiaadIfaaaGcpaGaaGjcV=qacqGH sgIRcaGGBbGaaGimaiaacYcacaaIXaGaaiyxaaaa@591E@ , как неаддитивная функция множества, является эффективным инструментом формализации таких нечетких исходных данных [2]. Например, значение g(A) может определять величину, пропорциональную относительному значению энергии в бассейне AX MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacqGHgksZcaWGybaaaa@4E05@  (как вариант, уверенность в том, что энергия “очень высокая”). В отличие от обычного представления исходных данных в виде “признак–значение”, нечеткая мера позволяет учесть модальность суждения, которая относится к связке “есть” в суждении. В общем случае модальность (от лат. modus — мера, способ) — способ существования какого-либо объекта или протекания какого-либо процесса, или же способ понимания суждения об объекте, явлении или событии [4]. Для нашего примера могут быть рассмотрены алетические модальности “необходимость, доверие, вероятность, правдоподобие, возможность”, которые уточняют исходное суждение и существенно повышают адекватность моделирования в условиях неопределенности.

В работе мы будем рассматривать нечеткие меры g(·) Сугэно [2], которые получили наибольшее распространение на практике. Хотя следует отметить, что основные результаты и выводы, полученные при дальнейшем рассмотрении, могут быть использованы и для нечетких мер другого типа (например, нечетких мер Цукомото [5]). Нечеткие меры g(·) Сугэно являются неаддитивными функциями множества, удовлетворяющими свойствам огра­ниченности g()=0,g(X)=1, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaeyybIySaaiykaiaays W7cqGH9aqpcaaMe8UaaGimaiaacYcacaaMe8UaaGjbVlaadEgacaGG OaGaamiwaiaacMcacaaMe8Uaeyypa0JaaGjbVlaaigdacaGGSaaaaa@5F70@  монотонности A,BX,AB, g(A)g(B), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadgeacaGGSaGaamOqaiabgA OinlaadIfacaGGSaGaaGjbVlaadgeacqGHgksZcaWGcbGaaiilaiaa KdkacaWGNbGaaiikaiaadgeacaGGPaGaeyizImQaam4zaiaacIcaca WGcbGaaiykaiaacYcaaaa@60C9@  непрерывности F n X, g( lim n F n )= lim n g( F n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadAeapaWaaSbaaSqaa8qaca WGUbaapaqabaGccaaMe8+dbiabgAOinlaaysW7caWGybGaaiilaiaa KdkacaaMe8Uaam4zaiaaykW7caGGOaGaaGzaV=aadaWfqaqaaiGacY gacaGGPbGaaiyBaaWcbaWdbiaad6gacqGHsgIRcqGHEisPa8aabeaa k8qacaWGgbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacMcacq GH9aqppaWaaCbeaeaapeGaciiBaiaacMgacaGGTbaal8aabaWdbiaa d6gacqGHsgIRcqGHEisPa8aabeaak8qacaWGNbGaaiikaiaadAeapa WaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiykaaaa@7389@ , где {Fn} — монотонная возрастающая или убывающая последовательность подмножеств, а также λ-правилу

  A,BX,AB=, g AB = = 1 λ 1+g A λ 1+g B λ 1 = =g A +g B +λg A g B , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaeyiaIiIaamyqaiaacYcacaWGcb GaeyOHI0SaamiwaiaacYcacaaMe8UaamyqaiabgMIihlaadkeacqGH 9aqpcqGHfiIXcaGGSaGaaqoOaiaadEgadaqadaWdaeaapeGaamyqai abgQIiilaadkeaaiaawIcacaGLPaaacqGH9aqpaeaacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaeq4UdWgaaiabgwSixpaabmaapa qaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiaadEgadaqadaWdaeaa peGaamyqaaGaayjkaiaawMcaaiabgwSixlabeU7aSbGaayjkaiaawM caaiabgwSixpaabmaapaqaa8qacaaIXaGaey4kaSIaam4zamaabmaa paqaa8qacaWGcbaacaGLOaGaayzkaaGaeyyXICTaeq4UdWgacaGLOa GaayzkaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabg2da9aqaaiab g2da9iaadEgadaqadaWdaeaapeGaamyqaaGaayjkaiaawMcaaiabgU caRiaadEgadaqadaWdaeaapeGaamOqaaGaayjkaiaawMcaaiabgUca RiabeU7aSjabgwSixlaadEgadaqadaWdaeaapeGaamyqaaGaayjkai aawMcaaiabgwSixlaadEgadaqadaWdaeaapeGaamOqaaGaayjkaiaa wMcaaiaacYcaaaaa@9A4C@  

где λ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ [1,+[. Важнейшим свойством меры g(·) Сугэно является наличие функциональной зависимости алетической модальности меры от параметра нормировки λ нечеткой меры. В частности, если λ=1, то мы имеем меры с модальностью возможности, если λ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ [1,0[ — то рассматриваются меры правдоподобия, при λ=0 меры будут иметь модальность “вероятно”, если же λ>0, то рассматриваются меры доверия, а при λ>>0 модальность суждения стремится к необходимости. Таким образом, учет модальности в нечеткой мере g(·) Сугэно позволяет уточнить исходные данные в виде суждений, повысить адекватность моделирования сложных энергетических ландшафтов, представляемых скалярными полями.

Однако проблемой для применения на практике нечетких мер является задание (определение, измерение, оценка …) их значений. Для непрерывного случая задание нечеткой меры предполагает возможность нахождения функции плотности нечеткой меры g(x):X[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamiEaiaacMcacaaMc8 UaaiOoaiaaysW7caaMe8UaamiwaiaaykW7cqGHsgIRcaGGBbGaaGim aiaacYcacaaMe8UaaGymaiaac2faaaa@5CCD@  в точках xXR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadIhacaaMe8UaeyicI4SaaGjbVlaadI facaaMc8UaeyOHI0SaaGjbVlaadkfaaaa@56C9@  [6] множества вещественных чисел со стандартной метрикой. На практике, как правило, множество X является ограниченным числовым множеством (далее будем полагать X =I=[0, 1]). То есть предполагается, что данные точки в I можно определить и в них произвести измерение значения меры. Здесь следует отметить, как минимум, два момента. Во-первых, на практике какие-либо реальные измерения могут быть осуществлены только в точках, соответствующих полю рациональных чисел Q [7]. При этом для определения всех xIR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadIhacaaMe8UaeyicI4SaaGjbVlaadM eacaaMc8UaeyOGIWSaaGjbVlaadkfaaaa@56B5@  необходимо выполнить пополнение поля рациональных чисел Q до поля действительных чисел R по евклидовой норме. Во-вторых, даже задав точки xX, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadIhacqGHiiIZcaWGybGaaiilaaaa@4E6F@  определить функцию плотности меры g(x) сложно, так как концептуально в теории нечеткой меры предполагается, что распределение уверенности по точкам множества I принципиально неизвестно [8] и может быть оценено только на некоторых подмножествах множества I. В этом случае предполагается, что построение нечеткой меры осуществляется по оценкам уверенности на данных подмножествах, которые иногда называют фокальными элементами. Например, может использоваться подход на основе функции меры фокальных элементов [9] m(): 2 I [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaad2gacaGGOaGaeyyXICTaaiykaiaayk W7caGG6aGaaGOma8aadaahaaWcbeqaa8qacaWGjbaaaOWdaiaaykW7 peGaeyOKH4Qaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@5A9B@ , для которой выполняются условия

  m( E j )>0,  j=1 K m( E j )=1, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaad2gacaaMc8UaaiikaiaaygW7caWGfb WdamaaBaaaleaapeGaamOAaaWdaeqaaOGaaGzaV=qacaGGPaGaeyOp a4JaaGimaiaacYcacaaMe8UaaGjbVlaaKdkadaGfWbqabSWdaeaape GaamOAaiabg2da9iaaigdaa8aabaWdbiaadUeaa0WdaeaapeGaeyye IuoaaOGaamyBaiaaykW7caGGOaGaaGzaVlaadweapaWaaSbaaSqaa8 qacaWGQbaapaqabaGccaaMb8+dbiaacMcacaaMe8Uaeyypa0JaaGjb VlaaigdacaGGSaaaaa@6F5D@  

где { E j I|j= 1,K ¯ } MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaacaGG7baeaaaaaaaaa8qacaWGfbWdamaaBaaaleaapeGaam OAaaWdaeqaaOGaaGjbV=qacqGHgksZcaaMe8UaamysaiaaykW7caGG 8bGaaGPaVlaadQgacaaMe8Uaeyypa0JaaGjbV=aadaqdaaqaa8qaca aIXaGaaiilaiaadUeaaaWdaiaac2haaaa@6016@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaceaqcLbvaqa aaaaaaaaWdbiab=PIivbaa@3805@ j Ej=I. При этом распределение уверенности внутри подмножеств фокальных элементов Ej MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=zOindaa@38D7@ I считается неизвестным. Полученные при этом значения меры и ее модальные свойства будут зависеть от выбранного множества { E j I|j= 1,K ¯ } MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaacaGG7baeaaaaaaaaa8qacaWGfbWdamaaBaaaleaapeGaam OAaaWdaeqaaOGaaGjbV=qacqGHgksZcaaMe8UaamysaiaaykW7caGG 8bGaaGPaVlaadQgacaaMe8Uaeyypa0JaaGjbV=aadaqdaaqaa8qaca aIXaGaaiilaiaadUeaaaWdaiaac2haaaa@6016@ .

Таким образом, существует противоречие. С одной стороны, надо задать меру на одноточечных подмножествах X, то есть определить плотность меры, а с другой стороны, это противоречит концепции нечеткой меры, которая не может быть локализована в одноточечных подмножествах в реальных условиях измерений, и надо использовать подмножества, где не уточняется распределение меры по точкам. Данное противоречие определяет актуальность приведенных исследований.

В отличие от поля действительных чисел R, поле р-адических чисел Qp имеет строгую внутреннюю иерархическую структуру, что позволяет конструктивно описывать состояние и динамику скалярного поля в виде совокупности энергетических бассейнов [10], которые представляются образами р-адических шаров. Топологическая структура поля р-адических чисел Qp обладает рядом свойств, которые позволяют весьма эффективно использовать образы р-адических шаров, для разрешения проблемы задания нечетких мер без необходимости определения функции плотности нечеткой меры. В то же время нахождение распределения нечеткой меры Сугэно на основе использования топологической структуры поля р-ади­ческих чисел приводит к необходимости определения нечеткой меры как функций р-адического аргумента, что требует использования алгебраической структуры поля р-адических чисел.

2. ПОСТАНОВКА ЗАДАЧИ

Учитывая результат теоремы Островского [11], существует единственная альтернатива полю действительных чисел R для области определения функции плотности нечеткой меры g(x). Это поле р-адических чисел Qp, получаемое в результате пополнения поля рациональных чисел Q по неархимедовой р-адической норме [7], удовлетворяющей условию сильного неравенства треугольника, р-ади­ческое число r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@  Qp отличное от нуля, имеет вид [12]:

  r= l=m + q l p l ,  q l =0,,p1,  q m 0, mZ. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhacaaMe8UaaGPaVlabg2da9iaayk W7daGfWbqabSWdaeaapeGaamiBaiabg2da9iabgkHiTiaad2gaa8aa baWdbiabgUcaRiabg6HiLcqdpaqaa8qacqGHris5aaGccaWGXbWdam aaBaaaleaapeGaamiBaaWdaeqaaOWdbiabgwSixlaadchapaWaaWba aSqabeaapeGaamiBaaaakiaacYcacaa5GcGaaGjbVlaaysW7caWGXb WdamaaBaaaleaapeGaamiBaaWdaeqaaOGaaGjbV=qacqGH9aqpcaaI WaGaaiilaiabgAci8kaacYcacaWGWbGaeyOeI0IaaGymaiaacYcaca a5GcGaaGjbVlaaysW7caWGXbWdamaaBaaaleaapeGaeyOeI0IaamyB aaWdaeqaaOGaaGPaV=qacqGHGjsUcaaMe8UaaGimaiaacYcacaa5Gc GaaGjbVlaaysW7caWGTbGaaGjbVlabgIGiolaaysW7caWGAbGaaiOl aaaa@8BE2@

Бесконечная влево и конечная вправо последовательность целых чисел ql=0,..., p 1 вида r =(...ql...q1q0q–1...qm)p называется канонической формой р-адического числа r. р-адические числа с нормой |r|p1, для которых l  0 [13] образуют кольцо целых р-адических чисел Zp. Их каноническая запись имеет вид бесконечной влево последовательности r =(...ql...q1q0) целых чисел ql. Иногда для записи канонической формы целых р-адических чисел для удобства используют бесконечную вправо последовательность целых чисел ql в виде r =(...ql...q1q0)p [14], которую мы в дальнейшем будем использовать.

В работе [13] было показано, что существует непрерывное отображение вида θ(r): QpR+, где R+ — множество неотрицательных действительных чисел, вида:

  θ(r)= l=m + q l p l1 , q l =0,,p1, mZ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeI7aXjaaykW7caGGOaGaamOCaiaacM cacaaMe8Uaeyypa0JaaGPaVpaawahabeWcpaqaa8qacaWGSbGaeyyp a0JaamyBaaWdaeaapeGaey4kaSIaeyOhIukan8aabaWdbiabggHiLd aakiaadghapaWaaSbaaSqaa8qacaWGSbaapaqabaGccaaMc8UaeyyX ICTaaGjbV=qacaWGWbWdamaaCaaaleqabaWdbiabgkHiTiaadYgacq GHsislcaaIXaaaaOGaaiilaiaaysW7caaMe8UaamyCa8aadaWgaaWc baWdbiaadYgaa8aabeaakiaaysW7peGaeyypa0JaaGjbVlaaicdaca GGSaGaeyOjGWRaaiilaiaadchacqGHsislcaaIXaGaaiilaiaaKdka caaMe8UaaGjbVlaad2gacaaMe8UaeyicI4SaaGjbVlaadQfacaGGUa aaaa@8585@

Отображение θ(r) сюръективно, взаимно однозначно почти всюду, то есть сохраняет меру (переводит р-адическую меру Хаара в меру Лебега на полупрямой), непрерывно и гёльдерово с показателем 1 [15]. При этом непересекающиеся шары отображаются на интервалы, которые не пересекаются или имеют пересечение нулевой меры. Кроме того, образ целого р-адического числа r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@  Zp принадлежит единичному интервалу вещественных чисел при отображении вида [16]:

  φ(r)=pθ(r)= l=0 + q l p l ,  q l =0,,p1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeA8aQjaacIcacaWGYbGaaiykaiaays W7cqGH9aqpcaaMe8UaamiCaiabgwSixlabeI7aXjaaykW7caGGOaGa amOCaiaacMcacqGH9aqpdaGfWbqabSWdaeaapeGaamiBaiabg2da9i aaicdaa8aabaWdbiabgUcaRiabg6HiLcqdpaqaa8qacqGHris5aaGc caWGXbWdamaaBaaaleaapeGaamiBaaWdaeqaaOGaaGjbV=qacqGHfl Y1caaMe8UaamiCa8aadaahaaWcbeqaa8qacqGHsislcaWGSbaaaOGa aiilaiaaKdkacaaMe8UaaGjbVlaadghapaWaaSbaaSqaa8qacaWGSb aapaqabaGccaaMe8+dbiabg2da9iaaysW7caaIWaGaaiilaiaaysW7 cqGHMacVcaGGSaGaaGjbVlaadchacqGHsislcaaIXaGaaiOlaaaa@84DD@

В работе [10] было показано, что подмножество A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=zOindaa@38D7@  I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=jOimdaa@38D2@  R ограниченного числового множества c точностью до образа р-адического предела центра р-адического шара может быть представлено в виде образа некоторого множества р-адических шаров вида U ε (a)={r Z p |ρ(r,a)ε}, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqza8 aabeaak8qacaGGOaGaamyyaiaacMcacaaMe8Uaeyypa0JaaGjbVlaa cUhacaWGYbGaaGjbVlabgIGiolaaysW7caWGAbWdamaaBaaaleaape GaamiCaaWdaeqaaOGaaGPaV=qacaGG8bGaaGPaVlabeg8aYjaaykW7 caGGOaGaamOCaiaacYcacaWGHbGaaiykaiabgsMiJkabew7aLjaac2 hacaGGSaaaaa@6CE5@  где ρ(r,a) — обобщенная метрика Кантора [17], a MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ I центр шара, ε MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ R+ его радиус,

  r= l=0 + q l p l , q l =0,,p1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhacqGH9aqpdaGfWbqabSWdaeaape GaamiBaiabg2da9iaaicdaa8aabaWdbiabgUcaRiabg6HiLcqdpaqa a8qacqGHris5aaGccaWGXbWdamaaBaaaleaapeGaamiBaaWdaeqaaO WdbiabgwSixlaadchapaWaaWbaaSqabeaapeGaamiBaaaakiaacYca caWGXbWdamaaBaaaleaapeGaamiBaaWdaeqaaOWdbiabg2da9iaaic dacaGGSaGaeyOjGWRaaiilaiaadchacqGHsislcaaIXaaaaa@654A@  —

целое р-адическое число. Все множество р-адических шаров в поле р-адических чисел Qp образуют топологию со специфическими свойствами [12]. Кроме того, каждая точка шара Uε(a) является его центром, и в этом смысле их можно считать равными по важности, что в целом согласуется с концепцией теории нечеткой меры. Указанные топологические свойства Qp, в частности соотношения между р-ади­ческими шарами, упрощают определение множества фокальных элементов, как образов р-адических шаров для построения нечеткой меры на ограниченном числовом множестве и не требуют необходимости задания плотности нечеткой меры g(x). В свою очередь, использование топологических свойств пространства р-адических чисел влечет за собой необходимость использования алгебраической структуры поля Qp, так как нечеткие меры будут задаваться как функции р-адического аргумента [9]. В частности, как будет показано ниже, для равномерных аддитивных нечетких мер значение нечеткой меры определяется простейшей функцией сложения р-адических чисел.

Таким образом, в данном материале ставится задача определения нечеткой меры на ограниченном числовом множестве I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=jOimdaa@38D2@  R с использованием топологической и алгебраической структуры поля р-ади­ческих чисел Qp без необходимости прямого задания плотности нечеткой меры.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Описание структуры ограниченного числового множества на основе р-адических шаров. В работе [10] были предложены подход и алгоритм представления произвольного подмножества A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=zOindaa@38D7@  I как образа множества р-адических шаров. При этом множество I представлялось в виде иерархической структуры подмножеств, которые удовлетворяют условиям:

  q l+1 =0 p1 E q 0 , q l+1 = E q 0 , q l , E q 0 =I,  q l =0,,p1,l=0,,+; MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeWaambCaeaacaWGfbWdamaaBaaale aapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGa eyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHRaWkcaaIXaaapa qabaaaleqaaaWdbeaacaWGXbWdamaaBaaameaapeGaamiBaiabgUca Riaaigdaa8aabeaal8qacqGH9aqpcaaIWaaabaGaamiCaiabgkHiTi aaigdaa0GaeSOkIufakiabg2da9iaadweapaWaaSbaaSqaa8qacaWG XbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVca WGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbeaak8qacaGGSaaa baGaamyra8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWa aapaqabaaaleqaaOWdbiabg2da9iaadMeacaGGSaGaaqoOaiaadgha paWaaSbaaSqaa8qacaWGSbaapaqabaGcpeGaeyypa0JaaGimaiaacY cacqGHMacVcaGGSaGaamiCaiabgkHiTiaaigdacaGGSaGaamiBaiab g2da9iaaicdacaGGSaGaeyOjGWRaaiilaiabgUcaRiabg6HiLkaacU daaaaa@81F1@

  i,j=0,...,p1,Card( E q 0 ,..., q l ,i )=Card( E q 0 ,..., q l ,j ); MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaacqGHaiIicaWGPbGaaiilaiaadQgacqGH9aqpcaaIWaGaai ilaiaaysW7caGGUaGaaiOlaiaac6cacaGGSaGaaGjbVlaadchacqGH sislcaaIXaGaaiilaiaaysW7caWGdbGaamyyaiaadkhacaWGKbGaai ikaiaadweadaWgaaWcbaGaamyCamaaBaaameaacaaIWaaabeaaliaa cYcacaaMe8UaaiOlaiaac6cacaGGUaGaaiilaiaaysW7caWGXbWaaS baaWqaaiaadYgaaeqaaSGaaiilaiaadMgaaeqaaOGaaiykaiabg2da 9iaadoeacaWGHbGaamOCaiaadsgacaGGOaGaamyramaaBaaaleaaca WGXbWaaSbaaWqaaiaaicdaaeqaaSGaaiilaiaaysW7caGGUaGaaiOl aiaac6cacaGGSaGaaGjbVlaadghadaWgaaadbaGaamiBaaqabaWcca GGSaGaamOAaaqabaGccaGGPaGaai4oaaaa@80C5@

  i,j=0,,p1,  E q 0 , q l ,i   E q 0 , q l ,j =. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadMgacaGGSaGaamOAaiabg2 da9iaaicdacaGGSaGaeyOjGWRaaiilaiaadchacqGHsislcaaIXaGa aiilaiaaKdkacaWGfbWdamaaBaaaleaapeGaamyCa8aadaWgaaadba Wdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaad baWdbiaadYgaa8aabeaal8qacaGGSaGaamyAaaWdaeqaaOWdbiabgM IihlaaKdkacaWGfbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWd biaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaadba WdbiaadYgaa8aabeaal8qacaGGSaGaamOAaaWdaeqaaOWdbiabg2da 9iabgwGiglaac6caaaa@70CF@

На рис. 1 представлен вариант разбиения множества I на подмножества { E q 0 , q l   q l =0,,p1 } MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaacUhacaWGfbWdamaaBaaaleaapeGaam yCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRa amyCa8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeWaaqqaa8 aabaWdbiaaKdkacaWGXbWdamaaBaaaleaapeGaamiBaaWdaeqaaOGa aGPaV=qacqGH9aqpcaaMe8UaaGimaiaacYcacaaMe8UaeyOjGWRaai ilaiaadchacqGHsislcaaIXaaacaGLhWoacaGG9baaaa@65C5@  при p =3.

Следует отметить, что в качестве числа разбиения множества I можно взять произвольное составное число s, для которого можно будет сформулировать и доказать приведенные ниже утверждения. Однако в этом случае величина |·|s, построенная по аналогии с р-адической нормой [12], будет являться псевдонормой. Тем не менее, как утверждается в работе [12], функция d(x,y)=|x y|s, будет являться метрикой, и можно рассмотреть пополнение поля Q по данной метрике. Данное пополнение позволяет определить кольцо Qs, которое для составного числа s не будет являться полем. Однако в соответствии с теоремой Гензеля, доказательство которой представлено также в работе [12], если число s представляется как произведение различных простых чисел, то кольцо Qs изоморфно прямой сумме р-адических полей Q s = Q p 1 Q p k , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgfapaWaaSbaaSqaa8qacaWGZbaapa qabaGccaaMe8+dbiabg2da9iaadgfapaWaaSbaaSqaa8qacaWGWbWd amaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacqGHvksXcqWIVl ctcqGHvksXcaWGrbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWd biaadUgaa8aabeaaaSqabaGccaaMb8Uaaiilaaaa@5E35@  где s= p 1 p k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadohacqGH9aqpcaWGWbWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabgwSixlabgAci8kabgwSixlaadcha paWaaSbaaSqaa8qacaWGRbaapaqabaaaaa@56E4@ . Но в этом случае последовательности, соответствующие р-адическим числам с простыми числами p1,..., pk, не обязательно сходятся по псевдонорме |·|s (если только sp) или даже могут быть не ограничены по ней, что осложняет выполнение операций в кольце Qs. Данный факт существенно осложнит рассмотрение дальнейшего материала. Поэтому далее для большей наглядности определения нечеткой меры на р-адических шарах мы будем рассматривать разбиение множества I для случая простого числа p.

 

Рис. 1. Разбиение множества I при p =3.

 

Любое подмножество E q 0 , q l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWd amaaBaaameaapeGaamiBaaWdaeqaaaWcbeaaaaa@5227@ , полученное при разбиении множества I, может быть представлено как образ р-адического шара U ε ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqza8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcaaaa@56BC@  [10], где ε=pl — радиус данного шара, r q 0 , q l = ( q 0 q l  (p1)) p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWd amaaBaaameaapeGaamiBaaWdaeqaaaWcbeaakiaaykW7peGaeyypa0 ZdaiaacIcapeGaamyCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qa cqGHMacVcaWGXbWdamaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaaKd kacaGGOaGaamiCaiabgkHiTiaaigdacaGGPaGaeyOjGW7daiaacMca daWgaaWcbaWdbiaadchaa8aabeaaaaa@64DD@ r q 0 , q l = ( q 0 q l  (p1)) p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWd amaaBaaameaapeGaamiBaaWdaeqaaaWcbeaakiaaykW7peGaeyypa0 ZdaiaacIcapeGaamyCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qa cqGHMacVcaWGXbWdamaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaaKd kacaGGOaGaamiCaiabgkHiTiaaigdacaGGPaGaeyOjGW7daiaacMca daWgaaWcbaWdbiaadchaa8aabeaaaaa@64DD@  — целое р-адическое число в канонической форме, определяющее центр шара. Радиус и центр шара полностью определяются последовательностью Se q l ( r q 0 , q l )=( q 0 ,..., q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadofacaWGLbGaamyCa8aadaWgaaWcba WdbiaadYgaa8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaa dghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiaaysW7cq GHMacVcaaMe8UaamyCa8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqa baGcpeGaaiykaiaaysW7cqGH9aqpcaaMe8+daiaacIcapeGaamyCa8 aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaaGjbVlaac6ca caGGUaGaaiOlaiaacYcacaaMe8UaamyCa8aadaWgaaWcbaWdbiaadY gaa8aabeaakiaacMcaaaa@6B95@  индексов подмножества E q 0 , q l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWd amaaBaaameaapeGaamiBaaWdaeqaaaWcbeaaaaa@5227@ . Далее последовательность Seql(r) будем условно называть р-адической координатой шара U ε ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqza8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcaaaa@56BC@ . Множество всех р-адических шаров обладает такими свойствами [12], что если есть U и V два р-адических шара в I, то они либо упорядочены по включению (или U MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=jOimdaa@38D2@ V, или V MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=jOimdaa@38D2@ U), либо не пересекаются (U V = MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=vGigdaa@384F@ ); каждый шар в I одновременно открыт и замкнут, а любая точка шара является его центром.

В последующих рассуждениях будем использовать ряд понятий и обозначений, приведенных в работе [10]. Пусть U α ( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaHXoqya8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGG Paaaaa@585C@  — р-адический шар с радиусом α = p1–l, а U( r q 0 , q l1 )={ U ε ( r q 0 , q l ), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaiuaaqaaaaaaaaaWdbiab=rr8vjaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGG SaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOWdbiaacMcacqGH9aqpcaGG7bGaamyva8aadaWg aaWcbaWdbiabew7aLbWdaeqaaOGaaiika8qacaWGYbWdamaaBaaale aapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGa aGjbVlabgAci8kaaysW7caWGXbWdamaaBaaameaapeGaamiBaaWdae qaaaWcbeaakiaacMcapeGaaiilaaaa@6985@   q l =0,,p1,   ε= p l } MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaaKdkadaabbaWdaeaapeGaamyCa8aada WgaaWcbaWdbiaadYgaa8aabeaakiaaykW7peGaeyypa0JaaGjbVlaa icdacaGGSaGaaGjbVlabgAci8kaacYcacaaMe8UaamiCaiabgkHiTi aaigdacaGGSaGaaqoOaaGaay5bSdGaaqoOaiaaysW7cqaH1oqzcaaM e8Uaeyypa0JaaGjbVlaadchapaWaaWbaaSqabeaapeGaeyOeI0Iaam iBaaaakiaac2haaaa@6CAC@  — множество шаров мощности Card(U( r q 0 , q l1 ))=p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGHbGaamOCaiaadsgacaaMc8 UaaiikaGqbaiab=rr8vjaacIcacaWGYbWdamaaBaaaleaapeGaamyC a8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaam yCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqa aOWdbiaacMcacaGGPaGaaGjbVlabg2da9iaaysW7caWGWbaaaa@62E2@ . Тогда шар U α ( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaHXoqya8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGG Paaaaa@585C@  является минимальным покрывающим шаром для множества U( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaiuaaqaaaaaaaaaWdbiab=rr8vjaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGG SaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOWdbiaacMcaaaa@575B@ , а также каждого из ­р-адических шаров данного множества, что обозначается как U ε ( r q 0 , q l ), U α ( r q 0 , q l1 )=Co v α ( U ε ( r q 0 , q l )). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaayIW7caWGvbWdamaaBaaale aapeGaeqyTdugapaqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qa caWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMa cVcaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbeaak8qacaGG PaGaaiilaiaaysW7caWGvbWdamaaBaaaleaapeGaeqySdegapaqaba GcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaa peGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWdamaaBaaame aapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGcpeGaaiykaiaa ykW7cqGH9aqpcaaMc8Uaam4qaiaad+gacaWG2bWdamaaBaaaleaape GaeqySdegapaqabaGccaaMi8Uaaiika8qacaWGvbWdamaaBaaaleaa peGaeqyTdugapaqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qaca WGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacV caWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbeaak8qacaGGPa WdaiaacMcacaaMc8UaaiOlaaaa@83CB@  При этом шары из множества U( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaiuaaqaaaaaaaaaWdbiab=rr8vjaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGG SaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOWdbiaacMcaaaa@575B@  являются равными по покрытию U α ( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaHXoqya8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGG Paaaaa@585C@ , что ­обо­значается как i,j=0,,p1, U ε ( r q 0 , q l1 ,i ) U ε ( r q 0 , q l1 ,j ){Cov| U α ( r q 0 , q l1 )}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadMgacaGGSaGaamOAaiaays W7cqGH9aqpcaaMe8UaaGimaiaacYcacqGHMacVcaGGSaGaamiCaiab gkHiTiaaigdacaGGSaGaamyva8aadaWgaaWcbaWdbiabew7aLbWdae qaaOWdbiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaad baWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaa adbaWdbiaadYgacqGHsislcaaIXaaapaqabaWcpeGaaiilaiaadMga a8aabeaak8qacaGGPaGaaGjbVlabggMi6kaaysW7caWGvbWdamaaBa aaleaapeGaeqyTdugapaqabaGccaGGOaWdbiaadkhapaWaaSbaaSqa a8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacq GHMacVcaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aa beaal8qacaGGSaGaamOAaaWdaeqaaOGaaiykaiaacUhapeGaam4qai aad+gacaWG2bGaaGPaVlaacYhacaaMc8Uaamyva8aadaWgaaWcbaWd biabeg7aHbWdaeqaaOWdbiaacIcacaWGYbWdamaaBaaaleaapeGaam yCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRa amyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaale qaaOWdbiaacMcapaGaaiyFa8qacaGGUaaaaa@94CF@ i,j=0,,p1, U ε ( r q 0 , q l1 ,i ) U ε ( r q 0 , q l1 ,j ){Cov| U α ( r q 0 , q l1 )}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadMgacaGGSaGaamOAaiaays W7cqGH9aqpcaaMe8UaaGimaiaacYcacqGHMacVcaGGSaGaamiCaiab gkHiTiaaigdacaGGSaGaamyva8aadaWgaaWcbaWdbiabew7aLbWdae qaaOWdbiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaad baWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaa adbaWdbiaadYgacqGHsislcaaIXaaapaqabaWcpeGaaiilaiaadMga a8aabeaak8qacaGGPaGaaGjbVlabggMi6kaaysW7caWGvbWdamaaBa aaleaapeGaeqyTdugapaqabaGccaGGOaWdbiaadkhapaWaaSbaaSqa a8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacq GHMacVcaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aa beaal8qacaGGSaGaamOAaaWdaeqaaOGaaiykaiaacUhapeGaam4qai aad+gacaWG2bGaaGPaVlaacYhacaaMc8Uaamyva8aadaWgaaWcbaWd biabeg7aHbWdaeqaaOWdbiaacIcacaWGYbWdamaaBaaaleaapeGaam yCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRa amyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaale qaaOWdbiaacMcapaGaaiyFa8qacaGGUaaaaa@94CF@  Шары из множества шаров U( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaiuaaqaaaaaaaaaWdbiab=rr8vjaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGG SaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOWdbiaacMcaaaa@575B@  неотличимы с точки зрения минимального покрытия U α ( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaHXoqya8 aabeaakiaacIcapeGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaacMca aaa@584C@ . Исходя из этого, можем предположить, что распределение уверенности на множестве равных по покрытию шаров является равномерным.

Равномерная нечеткая мера на р-адических шарах. Равномерной нечеткой мерой называется нечеткая мера, для которой xI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadIhacaaMe8UaeyicI4SaaG jbVlaadMeaaaa@519A@  плотность меры постоянна g(x)=const MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@  [0, 1]. Для построения равномерной нечеткой меры будем учитывать несколько замечаний. Во-первых, точки x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=jOimdaa@38D2@ R являются образами целых р-адических чисел и в них нет возможности определить плотность нечеткой меры g(x): I[0, 1]. Во-вторых, множество всех возможных р-адических шаров вида U ε ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqza8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcaaaa@56BC@ , заданных на I, определяет иерархическую структуру подмножеств данного множества [10]. В-третьих, будем считать, что известна модальность нечеткой меры g(·): 2I[0, 1], заданной на множестве I, а соответственно нам известен параметр λ данной нечеткой меры. В-четвертых, учитывая выше сказанное, будем полагать, что нечеткая мера на любом множестве шаров, равных по минимальному покрытию, имеет равномерное распределение плотности.

Для определения нечеткой меры на множестве I мы не можем задать функцию плотности меры в классическом варианте. В то же время на множестве I мы можем определить значение меры для образов всех р-адических шаров U ε ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqza8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaS baaWqaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcaaaa@56BC@ . Для этого воспользуемся свойством [2] ограниченности нечеткой меры g(I)=1.

Утверждение 1. Нечеткая мера g( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbe aak8qacaGGPaaaaa@5563@  подмножества E q 0 , q l I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWd amaaBaaameaapeGaamiBaaWdaeqaaaWcbeaakiaaykW7peGaeyOGIW SaaGjbVlaadMeaaaa@5823@ , являющегося образом р-ади­ческого шара U p l ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaiaioBaaaleacaIZdbiacaI ZGWbWdamacaIdhaaadbKaG4eacaIZdbiadaIJHsislcGaG4miBaaaa aSWdaeqcaIdak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiacaY1GXb WdamacaY1gaaadbGaGC9qacGaGCHimaaWdaeqcaYfal8qacGaGCjil aiadaYLHMacVcGaGCnyCa8aadGaGCTbaaWqaiaixpeGaiaixdYgaa8 aabKaGCbaaleqaaOWdbiaacMcaaaa@69B0@  для равномерной нечеткой меры g(·): 2I[0, 1] фиксированным параметром λ, если таковая существует, определяется соотношением:

  g( r q 0 ,, q l )= 1 λ (1+λ) 1/ p l 1 , l=0,,+. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbe aak8qacaGGPaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiab eU7aSbaacqGHflY1daGadeWdaeaapeGaaiikaiaaigdacqGHRaWkcq aH7oaBcaGGPaWaaWbaaSqabeaacaaIXaGaaGjcVlaac+cacaaMb8Ua amiCamaaCaaameqabaGaamiBaaaaaaGccaaMb8UaeyOeI0IaaGymaa Gaay5Eaiaaw2haaiaacYcacaa5GcGaaGjbVlaaysW7caWGSbGaeyyp a0JaaGimaiaacYcacqGHMacVcaGGSaGaaGjbVlabgUcaRiaaykW7cq GHEisPcaGGUaaaaa@7D7C@

Доказательство. Рассмотрим уровень l=1 разбиения множества I на p подмножеств E q 0 , q 1 ,  q 1 = MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaa meaapeGaaGymaaWdaeqaaaWcbeaak8qacaGGSaGaaqoOaiaadghapa WaaSbaaSqaa8qacaaIXaaapaqabaGccaaMc8+dbiabg2da9aaa@5769@ =0,,p1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabg2da9iaaicdacaGGSaGaeyOjGWRaai ilaiaadchacaaMe8UaeyOeI0IaaGjbVlaaigdacaGGUaaaaa@5578@  В этом случае р-адический шар U1(1), образом которого является все множество I, является минимальным покрытием для множества U( r q 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaiuaaqaaaaaaaaaWdbiab=rr8vjaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqabaGc peGaaiykaaaa@5118@  равных по данному покрытию шаров U p 1 ( r q 0 , q 1 ),  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacGaGeniCa8 aadGaGeXbaaWqajairbGaGe9qacWaGezOeI0Iaiairigdaaaaal8aa beaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaW qaa8qacaaIWaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qa caaIXaaapaqabaaaleqaaOWdbiaacMcacaGGSaGaaqoOaaaa@5D44@ Card(U( r q 0 ))=p,  r q 0 = (0,(p1),) p , φ( r q 0 )=1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGHbGaamOCaiaadsgacaGGOa acfaGae8hfXx1daiaacIcapeGaamOCa8aadaWgaaWcbaWdbiaadgha paWaaSbaaWqaa8qacaaIWaaapaqabaaaleqaaOGaaiyka8qacaGGPa GaaGjbVlabg2da9iaaysW7caWGWbGaaiilaiaaKdkacaWGYbWdamaa BaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqaba GccaaMb8+dbiabg2da9iaaysW7caGGOaGaaGimaiaacYcacaGGOaGa amiCaiabgkHiTiaaigdacaGGPaGaaiilaiabgAci8kaacMcapaWaaS baaSqaa8qacaWGWbaapaqabaGcpeGaaiilaiaaKdkacqaHgpGApaGa aiika8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbi aaicdaa8aabeaaaSqabaGccaGGPaGaaGjbV=qacqGH9aqpcaaMe8Ua aGymaiaac6caaaa@7DC2@  По условию нормировки g(I)=1 должно выполняться условие:

 

где   q 1 ,g( r q 0 , q 1 )=const 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaaKdkacaWGXbWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiaacYcacaWGNbGaaiikaiaadkhapaWa aSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbi aacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qa caGGPaGaaGjbVlabg2da9iaaysW7caqGJbGaae4Baiaab6gacaqGZb GaaeiDaiaaysW7cqGHiiIZdaWadaWdaeaapeGaaGimaiaacYcacaaI XaaacaGLBbGaayzxaaaaaa@6837@ . Тогда имеем:

  g( r q 0 , q 1 )= 1 λ 1+λ 1 p 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiaa dghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaacMcacq GH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeq4UdWgaaiabgwSi xpaacmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiabeU7aSb GaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGym aaWdaeaapeGaamiCaaaaaaGccqGHsislcaaIXaaacaGL7bGaayzFaa GaaiOlaaaa@64F3@

Для уровня разбиения l =2 должно выполняться условие:

  1 λ 1+λg r q 0 , q 1 , q 2 p 1 = =g r q 0 , q 1 = 1 λ 1+λ 1 p 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaabeqaaabaaaaaaaaapeWaaSaaa8aabaWdbiaaigdaa8aaba WdbiabeU7aSbaacqGHflY1daGadaWdaeaapeWaaeWaa8aabaWdbiaa igdacqGHRaWkcqaH7oaBcqGHflY1caWGNbWaaeWab8aabaWdbiaadk hapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqa aSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbi aacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOWd biaawIcacaGLPaaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaam iCaaaakiabgkHiTiaaigdaaiaawUhacaGL9baacqGH9aqpaeaacqGH 9aqpcaWGNbWaaeWaa8aabaWdbiaadkhapaWaaSbaaSqaa8qacaWGXb WdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacaWGXbWdamaa BaaameaapeGaaGymaaWdaeqaaaWcbeaaaOWdbiaawIcacaGLPaaacq GH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeq4UdWgaaiabgwSi xpaacmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiabeU7aSb GaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGym aaWdaeaapeGaamiCaaaaaaGccqGHsislcaaIXaaacaGL7bGaayzFaa GaaiOlaaaaaa@8497@

Отсюда нечеткая мера   q 2 ,g( r q 0 , q 1 , q 2 )=const[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaaygW7caa5GcGaamyCa8aada WgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaam4za8aacaGGOaWd biaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaa WdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqa aSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbe aakiaaygW7caGGPaWdbiaaykW7cqGH9aqpcaaMc8Uaae4yaiaab+ga caqGUbGaae4CaiaabshacaaMe8UaeyicI4SaaGjbVlaacUfacaaIWa GaaiilaiaaigdacaGGDbaaaa@6F7A@  для образа р-адического шара U p 2 ( r q 0 , q 1 , q 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfadaWgaaWcbaGaiqeodchadGar4W baaWqajqeobGar4iadeHJHsislcGar4GOmaaaaaSqabaGccGalakik aiacSa4GYbWdamacSa4gaaWcbGala+qacGalaoyCa8aadGalaUbaaW qaiWcGpeGaiWcGicdaa8aabKalacWcpeGaiWcGcYcacGalaoyCa8aa dGalaUbaaWqaiWcGpeGaiWcGigdaa8aabKalacWcpeGaiWcGcYcacG alaoyCa8aadGalaUbaaWqaiWcGpeGaiWcGikdaa8aabKalacaaleqc SaiakiaaygW7peGaiWcGcMcaaaa@6D8F@  на уровне l=2 будет определяться соотношением:

  g( r q 0 , q 1 , q 2 )= 1 λ 1+λ 1/ p 2 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiaa dghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapa WaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOGaaGzaV=qacaGGPaGa aGjbVlabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaH7oaBaa GaeyyXIC9aaiWab8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIa eq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaadaWcgaqaaiaaigdaae aacaWGWbWaaWbaaWqabeaacaaIYaaaaaaaaaGccaaMb8UaeyOeI0Ia aGymaaGaay5Eaiaaw2haaiaac6caaaa@6D00@

Выполняя аналогичную процедуру для произвольного l=0,...,+ мера для образа р-адического шара U p l ( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacGao4miCa8 aadGao4WbaaWqajGdobGao48qacWao4yOeI0IaiGdodYgaaaaal8aa beaak8qacGalakikaiacSa4GYbWdamacSa4gaaWcbGala+qacGalao yCa8aadGalaUbaaWqaiWcGpeGaiWcGicdaa8aabKalacWcpeGaiWcG cYcacWalaAOjGWRaiWcGcYcacGalaoyCa8aadGalaUbaaWqaiWcGpe GaiWcGdYgaa8aabKalacaaleqcSaiakiacSaiMb8+dbiacSaOGPaaa aa@6B5A@  будет определяться соотношением:

  g( r q 0 ,, q l )= 1 λ 1+λ 1/ p l 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWg aaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaai ilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqa aaWcbeaak8qacaGGPaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aaba WdbiabeU7aSbaacqGHflY1daGadeWdaeaapeWaaeWaa8aabaWdbiaa igdacqGHRaWkcqaH7oaBaiaawIcacaGLPaaal8aadGaGKYbaaeqcas AaiaiPdGaGKYbaaeqcasAaiaiPdGaGGVGbaeacacUaiai4igdaaeac acUaiai4dchadGaGGZbaaWqajai4bGaGGlacac+GSbaaaaaaaaaaaS GaaGzaVRWdbiabgkHiTiaaigdaaiaawUhacaGL9baacaGGSaaaaa@714F@

где при фиксированных q 0 ,, q l1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaaIWaaapa qabaGcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaaleaapeGa amiBaiabgkHiTiaaigdaa8aabeaaaaa@535C@  и   q l =0,,p1,g( r q 0 ,, q l )=const 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiabgcGiIiaaKdkacaWGXbWdamaa BaaaleaapeGaamiBaaWdaeqaaOGaaGjbV=qacqGH9aqpcaaMe8UaaG imaiaacYcacqGHMacVcaGGSaGaamiCaiabgkHiTiaaigdacaGGSaGa am4zaiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadba Wdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWa aSbaaWqaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcacaaMe8Uaey ypa0JaaGjbVlaabogacaqGVbGaaeOBaiaabohacaqG0bGaaGjbVlab gIGiolaaysW7daWadaWdaeaapeGaaGimaiaacYcacaaIXaaacaGLBb Gaayzxaaaaaa@6A6E@   q l =0,,p1,g( r q 0 ,, q l )=const 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiabgcGiIiaaKdkacaWGXbWdamaa BaaaleaapeGaamiBaaWdaeqaaOGaaGjbV=qacqGH9aqpcaaMe8UaaG imaiaacYcacqGHMacVcaGGSaGaamiCaiabgkHiTiaaigdacaGGSaGa am4zaiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadba Wdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWa aSbaaWqaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcacaaMe8Uaey ypa0JaaGjbVlaabogacaqGVbGaaeOBaiaabohacaqG0bGaaGjbVlab gIGiolaaysW7daWadaWdaeaapeGaaGimaiaacYcacaaIXaaacaGLBb Gaayzxaaaaaa@6A6E@ .

Далее меру g( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWg aaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaai ilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqa aaWcbeaak8qacaGGPaaaaa@48FE@  будем называть мерой р-адического шара U p l ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacGar4miCa8 aadGar4WbaaWqajqeobGar48qacWar4yOeI0IaiqeodYgaaaaal8aa beaak8qacGaoakikaiac4a4GYbWdamac4a4gaaWcbGaoa+qacGaoao yCa8aadGaoaUbaaWqaiGdGpeGaiGdGicdaa8aabKaoacWcpeGaiGdG cYcacWaoaAOjGWRaiGdGdghapaWaiGdGBaaameac4a4dbiac4a4GSb aapaqajGdGaaWcbKaoacGcpeGaiGdGcMcaaaa@68D8@ , понимая, что это мера подмножества E q 0 , q l I, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWd amaaBaaameaapeGaamiBaaWdaeqaaaWcbeaakiaaykW7peGaeyOHI0 SaaGjbVlaadMeacaGGSaaaaa@58D8@  являющегося образом данного шара.

Следствие. Мера подмножества множества I, являющегося образом р-адического шара U p l ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacGar4miCa8 aadGar4WbaaWqajqeobGar48qacWar4yOeI0IaiqeodYgaaaaal8aa beaak8qacGalakikaiacSa4GYbWdamacSa4gaaWcbGala+qacGalao yCa8aadGalaUbaaWqaiWcGpeGaiWcGicdaa8aabKalacWcpeGaiWcG cYcacWalaAOjGWRaiWcGdghapaWaiWcGBaaameacSa4dbiacSa4GSb aapaqajWcGaaWcbKalacGccGalaIzaV=qacGalakykaaaa@6A3E@  для равномерной меры вероятности Pr(): 2 I [0.1], MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaaGPaVlaacIcacqGHfl Y1caGGPaGaaGPaVlaacQdacaaIYaWdamaaCaaaleqabaWdbiaadMea aaGcpaGaaGjcV=qacqGHsgIRcaaMe8Uaai4waiaaicdacaGGUaGaaG ymaiaac2facaGGSaaaaa@5F45@  определяется радиусом р-адического шара Pr( r q 0 ,, q l )= p l . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaaGPaVlaacIca caWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8 aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqaa8qa caWGSbaapaqabaaaleqaaOWdbiaacMcacaaMe8Uaeyypa0JaaGjbVl aadchapaWaaWbaaSqabeaapeGaeyOeI0IaamiBaaaakiaac6caaaa@5365@

Доказательство. U p 1l ( r q 0 ,, q l1 ), Card(U( r q 0 , q l1 ))= MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiadSdOHaiIicGaVaoyva8aadaWg aaWcbaWdbiacas0GWbWdamacasehaaadbKaGefacas0dbiacaseIXa GamairgkHiTiacas0GSbaaaaWcpaqabaGcpeGaaiikaiaadkhapaWa aSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbi aacYcacqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGH sislcaaIXaaapaqabaaaleqaaOGaaGzaV=qacaGGPaGaaiilaiaaKd kacaWGdbGaamyyaiaadkhacaWGKbWdaiaacIcatuuDJXwAK1uy0Hwm aeXbfv3ySLgzG0uy0Hgip5wzaGGba8qacqWFueFvcaGGOaGaamOCa8 aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWc peGaaiilaiabgAci8kaadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0 IaaGymaaWdaeqaaaWcbeaakiaaygW7peGaaiyka8aacaGGPaGaaGjb V=qacqGH9aqpaaa@7B86@  = p. Pr(I)=Pr( r q 0 )=1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaaiikaiaadMea caGGPaGaaGjbVlabg2da9iaaysW7caWGqbGaamOCaiaacIcacaWGYb WdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaa aSqabaGcpeGaaiykaiaaysW7cqGH9aqpcaaMe8UaaGymaiaac6caaa a@5234@  Тогда для равномерной меры имеем:

  Pr( r q 0 ,, q l )= 1 p Pr( r q 0 ,, q l1 )= = 1 p 1 p Pr( r q 0 ,, q l2 ) == = 1 p l Pr( r q 0 )= 1 p l 1= p l .  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakqaaceqaaabaaaaaaaaapeGaamiuaiaadkhacaGGOaGa amOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapa qabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGa amiBaaWdaeqaaaWcbeaak8qacaGGPaGaeyypa0ZaaSaaa8aabaWdbi aaigdaa8aabaWdbiaadchaaaGaeyyXICTaamiuaiaadkhapaGaaiik a8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaic daa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqa a8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaacMcapeGaey ypa0dabaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadcha aaGaeyyXIC9aaiWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8 qacaWGWbaaaiabgwSixlaadcfacaWGYbWdaiaacIcapeGaamOCa8aa daWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpe GaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiab gkHiTiaaikdaa8aabeaaaSqabaGccaGGPaaapeGaay5Eaiaaw2haai abg2da9iabgAci8kabg2da9aqaaiabg2da9maalaaapaqaa8qacaaI Xaaapaqaa8qacaWGWbWdamaaCaaaleqabaWdbiaadYgaaaaaaOGaey yXICTaamiuaiaadkhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadgha paWaaSbaaWqaa8qacaaIWaaapaqabaaaleqaaOWdbiaacMcacqGH9a qpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaahaaWcbeqa a8qacaWGSbaaaaaakiabgwSixlaaigdacqGH9aqpcaWGWbWdamaaCa aaleqabaWdbiabgkHiTiaadYgaaaGccaGGUaGaaGjbVlaaKdkariWv P52zKLMBNnhiYaacgaGae8ha3lkaaaa@9DBA@

Определение равномерной меры для множества р-адических шаров на любом уровне l=0,...,+ полностью задает нечеткую меру на I. Однако при этом нет необходимости задавать плотность нечеткой меры, которая привязана к точкам множества I. Мера р-адического шара определяется параметром меры λ (ее модальностью) и значением параметра разбиения p. Следует отметить, что наши рассуждения исходили из того, что p является простым числом. Однако приведенные результаты допустимы и для более общего случая, когда p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ N, где N — множество натуральных чисел [14]. В дальнейшем для простоты изложения мы будем использовать понятие р-адического числа, понимая, что в общем случае возможно использование произвольного p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ N. Заметим, что значение равномерной меры для р-адического шара зависит от pl. В этом смысле наблюдается сходство построения данной меры с построением р-адических чисел [18].

Рассмотрим порядок расчета равномерной нечеткой меры на р-адических шарах для произвольного подмножества ограниченного числового множества I. Подмножество AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  c точностью до образа р-адического предела центра р-адического шара является образом множества р-адических шаров U(A)={ U ε i ( r i )|i= 1, N A ¯ } MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfacaGGOaGaamyqaiaacMcacaaMe8 Uaeyypa0JaaGjbVlaacUhacaWGvbWdamaaBaaaleaapeGaeqyTdu2d amaaBaaameaapeGaamyAaaWdaeqaaaWcbeaak8qacaGGOaGaamOCa8 aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaGaaGPaVlaacYha caaMc8UaamyAaiaaysW7cqGH9aqpcaaMe8+damaanaaabaWdbiaaig dacaGGSaGaamOta8aadaWgaaWcbaWdbiaadgeaa8aabeaaaaGcpeGa aiyFaaaa@6832@  [10]. На практике для подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  рассматривается конечное множество р-адических шаров U ε apr (A)={ U ε i ( r i )|i= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacyc4GvbWdamacyc4gaaWcbGaMa+qacW aMasyTdu2damacyc4gaaadbGaMa+qacGaMaoyyaiacyc4GWbGaiGjG dkhaa8aabKaMacaaleqcyciakiaaygW7peGaaiikaiaadgeacaGGPa GaaGjbVlabg2da9iaaysW7caGG7bGaamyva8aadaWgaaWcbaWdbiab ew7aL9aadaWgaaadbaWdbiaadMgaa8aabeaaaSqabaGccaGGOaWdbi aadkhapaWaaSbaaSqaa8qacaWGPbaapaqabaGccaGGPaGaaGPaV=qa caGG8bGaaGPaVlaadMgacaaMe8Uaeyypa0daaa@7529@ = 1, N A ¯ , U ε i ( r i )U(A), ε i ε apr [0,1]}U(A), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaacqGH9aqpcaaMe8+aa0aaaeaaqaaaaaaaaaWdbiaaigdaca GGSaGaamOta8aadGauaUbaaSqaiafGpeGaiafGdgeaa8aabKauacaa aOWdbiacqbOGSaGaamyva8aadaWgaaWcbaWdbiabew7aL9aadaWgaa adbaWdbiaadMgaa8aabeaaaSqabaGccaGGOaWdbiaadkhapaWaaSba aSqaa8qacaWGPbaapaqabaGccaGGPaGaaGjbV=qacqGHiiIZcaaMe8 UaamyvaiaacIcacaWGbbGaaiykaiaacYcacaaMe8UaaGjbVlabew7a L9aadaWgaaWcbaWdbiaadMgaa8aabeaakiaaysW7peGaeyyzImRaaG jbVlabew7aL9aadaWgaaWcbaWdbiaadggacaWGWbGaamOCaaWdaeqa aOGaaGPaV=qacqGHiiIZcaaMe8Uaai4waiaaicdacaGGSaGaaGymai aac2facaGG9bGaaGjbVlabgAOinlaaysW7caWGvbGaaiikaiaadgea caGGPaGaaiilaaaa@87CD@  кото­рое аппроксимирует множество AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  с точностью εapr. В этом случае р-адические шары из U ε apr (A) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH 1oqzpaWaaSbaaWqaa8qacaWGHbGaamiCaiaadkhaa8aabeaaaSqaba GccaaMb8+dbiaacIcacaWGbbGaaiykaaaa@47C4@  минимального радиуса будут лежать на уровне L= log p min i= 1, N A ¯ ε i ,  ε i ε apr . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYeacaaMe8Uaeyypa0JaaGjbVlabgk HiTiGacYgacaGGVbGaai4za8aadaWgaaWcbaWdbiaadchaa8aabeaa kmaaxababaWdbiGac2gacaGGPbGaaiOBaaWcpaqaa8qacGaGKoyAai adasQH9aqppaWaiaiPnaaabGaGK+qacGaGKIymaiacasQGSaGaiaiP d6eapaWaiafPBaaameacqr6dbiacqr6GbbaapaqajafPaaaaaSqaba GcpeGaeqyTdu2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYca caa5GcGaeqyTdu2damaaBaaaleaapeGaamyAaaWdaeqaaOGaaGjbV= qacqGHLjYScaaMe8UaeqyTdu2damaaBaaaleaapeGaamyyaiaadcha caWGYbaapaqabaGccaGGUaaaaa@7C25@  Пусть U l (A)U(A) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacWc4GvbWdamaaBaaaleaapeGaamiBaa WdaeqaaOWdbiaacIcacaWGbbGaaiykaiaaysW7cqGHgksZcaaMe8Ua iGjGdwfacaGGOaGaamyqaiaacMcaaaa@592A@  включает все шары U ε i ( r i ), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqzpa WaaSbaaWqaa8qacaWGPbaapaqabaaaleqaaOGaaGzaV=qacaGGOaGa amOCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaGaaiilaa aa@5487@  для которых ε i = p l , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiabew7aL9aadaWgaaWcbaWdbiaa dMgaa8aabeaakiaaykW7peGaeyypa0JaaGjbVlaadchapaWaaWbaaS qabeaapeGaeyOeI0IaamiBaaaak8aacaaMb8Uaaiilaaaa@4A96@   l=0,,+, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMe8Uaeyypa0JaaGjbVlaaic dacaGGSaGaaGjbVlabgAci8kaacYcacqGHRaWkcqGHEisPcaGGSaaa aa@57AA@  и пусть Card( U l (A))= a l N. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGHbGaamOCaiaadsgacaaMc8 UaaiikaiaadwfapaWaaSbaaSqaa8qacaWGSbaapaqabaGcpeGaaiik aiaadgeacaGGPaGaaiykaiaaysW7cqGH9aqpcaaMe8Uaamyya8aada WgaaWcbaWdbiaadYgaa8aabeaakiaaykW7peGaeyicI4SaaGjbVlaa d6eacaGGUaaaaa@61BD@  Тогда ­справедливо следующее утверждение.

Утверждение 2. Мера подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  для равномерной нечеткой меры на р-адических шарах g(): 2 I [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaeyyXICTaaiykaiaayk W7caGG6aGaaGOma8aadaahaaWcbeqaa8qacaWGjbaaaOWdaiaayIW7 peGaeyOKH4Qaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@5A9B@  определяется соотношением:

  g(A)= 1 λ 1+λ r A 1 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamyqaiaacMca caaMe8Uaeyypa0JaaGjbVpaalaaapaqaa8qacaaIXaaapaqaa8qacq aH7oaBaaGaeyyXIC9aaiWab8aabaWdbmaabmaapaqaa8qacaaIXaGa ey4kaSIaeq4UdWgacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadk hapaWaaWbaaWqabeaapeGaiWiPdgeaaaaaaOWdaiaaygW7peGaeyOe I0IaaGymaaGaay5Eaiaaw2haaiaacYcaaaa@5912@

где r A = j=L + ( q j p j ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadkhapaWaaWbaaSqabeaapeGa amyqaaaak8aacaaMc8+dbiabg2da9iaaykW7daGfWbqabSWdaeaape GaamOAaiabg2da9iabgkHiTiaadYeaa8aabaWdbiabgUcaRiabg6Hi Lcqdpaqaa8qacqGHris5aaGccaGGOaGaamyCa8aadaWgaaWcbaWdbi aadQgaa8aabeaakiaaykW7peGaeyyXICTaaGjbVlaadchapaWaaWba aSqabeaapeGaamOAaaaakiaacMcaaaa@5850@  — результирующее р-адическое число, полученное по правилу сложения р-адических чисел rlA для всех уровней разложения l L, L MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbvaqa aaaaaaaaWdbiab=HGiodaa@385A@ N, где

  r l A = j=L + ( q j p j ) , b j l = b n l ,j=nl, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaacaWGYbWaa0baaSqaaiaadYgaaeaacaWGbbaaaOGaaGjbVl abg2da9iaaykW7daaeWbqaaiaacIcacaWGXbWaaSbaaSqaaiaadQga aeqaaOGaeyyXICTaamiCamaaCaaaleqabaGaamOAaaaakiaacMcaaS qaaiaadQgacqGH9aqpcqGHsislcaWGmbaabaGaey4kaSIaeyOhIuka niabggHiLdGccaGGSaGaaGjbVlaaysW7caWGIbWaa0baaSqaaiaadQ gaaeaacaWGSbaaaOGaaGjbVlabg2da9iaaysW7caWGIbWaa0baaSqa aiaad6gaaeaacaWGSbaaaOGaaiilaiaaysW7caaMe8UaamOAaiaays W7cqGH9aqpcaaMe8UaamOBaiabgkHiTiaadYgacaGGSaaaaa@7BB3@

а bnl — коэффициенты в позиционной р-адической системе счисления для числа a l =Card( U l (A)). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qacaWGSbaapa qabaGccaaMe8+dbiabg2da9iaaysW7caWGdbGaamyyaiaadkhacaWG KbGaaiikaiaadwfapaWaaSbaaSqaa8qacaWGSbaapaqabaGcpeGaai ikaiaadgeacaGGPaGaaiykaiaaykW7caGGUaaaaa@5C4E@

Доказательство. В соответствии с [10] любое подмножество AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  однозначно определяется множеством р-адических шаров U(A), имеющих образом интервалы, которые либо не пересекаются, либо имеют пересечение нулевой меры. В этом случае мера подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  может быть определена соотношением:

  g A = 1 λ i=1 N A 1+λ g i 1 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgadaqadaWdaeaapeGaamyqaaGaay jkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaH 7oaBaaGaeyyXIC9aaiWaa8aabaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOta8aadaWgaaadbaWdbiaadgea a8aabeaaa0qaa8qacqGHpis1aaGcdaqadaWdaeaapeGaaGymaiabgU caRiabeU7aSjabgwSixlaadEgapaWaaSbaaSqaa8qacaWGPbaapaqa baaak8qacaGLOaGaayzkaaGaeyOeI0IaaGymaaGaay5Eaiaaw2haai aacYcaaaa@6934@

где gi — мера шара U ε i ( r i )U(A). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqzpa WaaSbaaWqaa8qacaWGPbaapaqabaaaleqaaOGaaGzaV=qacaGGOaGa amOCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaGaaGjbVl abgIGiolaaysW7caWGvbGaaiikaiaadgeacaGGPaGaaGPaVlaac6ca aaa@5DAB@  Для равномерной нечеткой меры справедливо соотношение:

  g A = 1 λ l=0 + 1+λ g l a l 1 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgadaqadaWdaeaapeGaamyqaaGaay jkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaH 7oaBaaGaeyyXIC9aaiWaa8aabaWdbmaawahabeWcpaqaa8qacaWGSb Gaeyypa0JaaGimaaWdaeaapeGaey4kaSIaeyOhIukan8aabaWdbiab g+Givdaakmaabmaapaqaa8qacaaIXaGaey4kaSIaeq4UdWMaeyyXIC Taam4za8aadaWgaaWcbaWdbiaadYgaa8aabeaaaOWdbiaawIcacaGL PaaapaWaaWbaaSqabeaapeGaamyya8aadaWgaaadbaWdbiaadYgaa8 aabeaaaaGcpeGaeyOeI0IaaGymaaGaay5Eaiaaw2haaiaacYcaaaa@6C3F@

где gl — мера р-адических шаров U ε i ( r i ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqzpa WaaSbaaWqaa8qacaWGPbaapaqabaaaleqaaOGaaGzaV=qacaGGOaGa amOCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaaaaa@53D7@  с радиусом ε i = p l , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiabew7aL9aadaWgaaWcbaWdbiaa dMgaa8aabeaakiaaykW7peGaeyypa0JaaGjbVlaadchapaWaaWbaaS qabeaapeGaeyOeI0IaamiBaaaak8aacaaMb8Uaaiilaaaa@4A96@   l=0,,+, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMe8Uaeyypa0JaaGjbVlaaic dacaGGSaGaaGjbVlabgAci8kaacYcacqGHRaWkcqGHEisPcaGGSaaa aa@57AA@   a l =Card( U l (A)). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qacaWGSbaapa qabaGccaaMc8+dbiabg2da9iaaysW7caWGdbGaamyyaiaadkhacaWG KbGaaGPaVlaacIcacaWGvbWdamaaBaaaleaapeGaamiBaaWdaeqaaO WdbiaacIcacaWGbbGaaiykaiaacMcacaaMc8UaaiOlaaaa@5DD7@  Исходя из построения равномерной нечеткой меры на р-адических шарах (Утверждение 1), имеем (1+λ g l ) p = MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaacIcacaaIXaGaey4kaSIaeq4U dWMaeyyXICTaam4za8aadaWgaaWcbaWdbiaadYgaa8aabeaak8qaca GGPaWdamaaCaaaleqabaWdbiaadchaaaGcpaGaaGPaV=qacqGH9aqp aaa@4B3D@ =(1+λ g l1 ). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiabg2da98aacaGGOaWdbiaaigda cqGHRaWkcqaH7oaBcqGHflY1caWGNbWdamaaBaaaleaapeGaamiBai abgkHiTiaaigdaa8aabeaakiaacMcacaaMc8UaaiOlaaaa@4C3C@  Натуральное число al может быть представлено [18] в виде:

  a l = n=0 + ( b n l p n ),  b n l ,nN MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaeyypa0ZaaybCaeqal8aabaWdbiaad6gacqGH9aqpcaaI Waaapaqaa8qacqGHRaWkcqGHEisPa0WdaeaapeGaeyyeIuoaaOGaai ikaiaadkgapaWaa0baaSqaa8qacaWGUbaapaqaa8qacaWGSbaaaOWd aiaaykW7peGaeyyXICTaaGjbVlaadchapaWaaWbaaSqabeaapeGaam OBaaaakiaacMcacaGGSaGaaqoOaiaaysW7caaMe8UaamOya8aadaqh aaWcbaWdbiaad6gaa8aabaWdbiaadYgaaaGccaGGSaGaaGjbVlaays W7caWGUbGaaGjbVlabgIGiolaaysW7caWGobaaaa@747F@  

или в позиционной р-адической системе счисления в виде a l = ( b 0 l b 1 l b 2 l b n l ) p . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qacaWGSbaapa qabaGccaaMe8+dbiabg2da9iaaysW7paGaaiika8qacaWGIbWdamaa DaaaleaapeGaaGimaaWdaeaapeGaamiBaaaakiaadkgapaWaa0baaS qaa8qacaaIXaaapaqaa8qacaWGSbaaaOGaamOya8aadaqhaaWcbaWd biaaikdaa8aabaWdbiaadYgaaaGccqGHMacVcaWGIbWdamaaDaaale aapeGaamOBaaWdaeaapeGaamiBaaaakiabgAci8+aacaGGPaWaaSba aSqaa8qacaWGWbaapaqabaGccaGGUaaaaa@63C3@

Исходя из Утверждения 1, мера gl определяется соотношением:

  g l = 1 λ (1+λ) 1/ p l 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadEgapaWaaSbaaSqaa8qacaWG SbaapaqabaGccaaMe8+dbiabg2da9maalaaapaqaa8qacaaIXaaapa qaa8qacqaH7oaBaaGaeyyXIC9aaiWab8aabaWdbiaacIcacaaIXaGa ey4kaSIaeq4UdWMaaiyka8aadaahaaWcbeqaamaalyaabaGaaGymaa qaaiaadchadaahaaadbeqaaiaadYgaaaaaaaaakiaaygW7peGaeyOe I0IaaGymaaGaay5Eaiaaw2haaaaa@5550@ .

Тогда, подставив это выражение, получим:

 1+λ·gln=0+bnl·pn==1+λ1λ1+λ1pl1n=0+(bnlpn)==1+λplj=l+bnlpj=1+λn=0+bnl·pn-l=1+λn=0+bjl·pj,

где b j l = b n l , j=nl. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbWexLMBsv3CZLwyUbqegm1yO92BSj0BVT2qamrr 1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbqee0evGueE0jxyai baieIcFD0df9vqqrpepC0xbbL8F4rqWq=epeea0xe9Lqpe0xc9q8qq aqFn0dXdir=xcvk9pIe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0d b8meaabaqaciaacaGaaeqabaWacqaafaaakeaaqaaaaaaaaaWdbiaa dkgapaWaa0baaSqaa8qacaWGQbaapaqaa8qacaWGSbaaaOWdaiaays W7peGaeyypa0JaaGjbVlaadkgapaWaa0baaSqaa8qacaWGUbaapaqa a8qacaWGSbaaaOGaaiilaiaaysW7caaMe8UaaqoOaiaadQgacaaMe8 Uaeyypa0JaaGjbVlaad6gacqGHsislcaWGSbGaaiOlaaaa@5D78@  Ряд j=l + ( b j l p j )= r l A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQbGa eyypa0JaeyOeI0IaamiBaaWdaeaapeGaey4kaSIaeyOhIukan8aaba WdbiabggHiLdaak8aacaGGOaWdbiaadkgapaWaa0baaSqaa8qacaWG Qbaapaqaa8qacaWGSbaaaOWdaiaaysW7peGaeyyXICTaaGPaVlaadc hapaWaaWbaaSqabeaapeGaamOAaaaak8aacaGGPaGaaGjbV=qacqGH 9aqpcaaMe8UaamOCa8aadaqhaaWcbaWdbiaadYgaa8aabaWdbiaadg eaaaaaaa@5A9B@  является р-адическим числом [7]. Тогда можем записать:

  g a = 1 λ l=0 + 1+λ g l a l 1 = = 1 λ 1+λ l=0 + j=l + b j 0 p j 1 = = 1 λ 1+λ j=0 + b j 0 p j + j=1 + b j 1 p j + j=2 + b j 2 p j 1 = = 1 λ 1+λ r 0 A r 1 A r 2 A 1 = 1 λ 1+λ r A 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaiaadEgadaqadaqaaiaadggaaiaawIcacaGLPaaacq GH9aqpdaWcaaqaaiaaigdaaeaacqaH7oaBaaGaeyyXIC9aaiWaaeaa daqeWbqaamaabmaabaGaaGymaiabgUcaRiabeU7aSjabgwSixlaadE gadaWgaaWcbaGaamiBaaqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaadggadaWgaaadbaGaamiBaaqabaaaaOGaeyOeI0IaaGymaaWcba GaamiBaiabg2da9iaaicdaaeaacqGHRaWkcqGHEisPa0Gaey4dIuna aOGaay5Eaiaaw2haaiabg2da9aqaaiabg2da9maalaaabaGaaGymaa qaaiabeU7aSbaadaGadaqaamaabmaabaGaaGymaiabgUcaRiabeU7a SbGaayjkaiaawMcaamaaCaaaleqabaWaaabmaeaadaGadaqaamaaqa dabaWaaeWaaeaacaWGIbWaa0baaWqaaiaadQgaaeaacaaIWaaaaSGa eyyXICTaamiCamaaCaaameqabaGaamOAaaaaaSGaayjkaiaawMcaaa adbaGaamOAaiabg2da9iabgkHiTiaadYgaaeaacqGHRaWkcqGHEisP a4GaeyyeIuoaaSGaay5Eaiaaw2haaaadbaGaamiBaiabg2da9iaaic daaeaacqGHRaWkcqGHEisPa4GaeyyeIuoaaaGccqGHsislcaaIXaaa caGL7bGaayzFaaGaeyypa0dabaGaeyypa0ZaaSaaaeaacaaIXaaaba Gaeq4UdWgaamaacmaabaWaaeWaaeaacaaIXaGaey4kaSIaeq4UdWga caGLOaGaayzkaaWaaWbaaSqabeaadaaeWaqaamaabmaabaGaamOyam aaDaaameaacaWGQbaabaGaaGimaaaaliabgwSixlaadchadaahaaad beqaaiaadQgaaaaaliaawIcacaGLPaaacqGHRaWkdaaeWaqaamaabm aabaGaamOyamaaDaaameaacaWGQbaabaGaaGymaaaaliabgwSixlaa dchadaahaaadbeqaaiaadQgaaaaaliaawIcacaGLPaaacqGHRaWkaW qaaiaadQgacqGH9aqpcqGHsislcaaIXaaabaGaey4kaSIaeyOhIuka oiabggHiLdWcdaaeWaqaamaabmaabaGaamOyamaaDaaameaacaWGQb aabaGaaGOmaaaaliabgwSixlaadchadaahaaadbeqaaiaadQgaaaaa liaawIcacaGLPaaacqWIVlctaWqaaiaadQgacqGH9aqpcqGHsislca aIYaaabaGaey4kaSIaeyOhIukaoiabggHiLdaameaacaWGQbGaeyyp a0JaaGimaaqaaiabgUcaRiabg6HiLcGdcqGHris5aaaakiabgkHiTi aaigdaaiaawUhacaGL9baacqGH9aqpaeaacqGH9aqpdaWcaaqaaiaa igdaaeaacqaH7oaBaaWaaiWaaeaadaqadaqaaiaaigdacqGHRaWkcq aH7oaBaiaawIcacaGLPaaadaahaaWcbeqaaiaadkhadaqhaaadbaGa aGimaaqaaiaadgeaaaWccqGHvksXcaWGYbWaa0baaWqaaiaaigdaae aacaWGbbaaaSGaeyyLIuSaamOCamaaDaaameaacaaIYaaabaGaamyq aaaaliabgwPiflabl+UimbaakiabgkHiTiaaigdaaiaawUhacaGL9b aacqGH9aqpdaWcaaqaaiaaigdaaeaacqaH7oaBaaWaaiWaaeaadaqa daqaaiaaigdacqGHRaWkcqaH7oaBaiaawIcacaGLPaaadaahaaWcbe qaaiaadkhadaahaaadbeqaaiaadgeaaaaaaOGaeyOeI0IaaGymaaGa ay5Eaiaaw2haaiaacYcaaaaa@0081@

где lL r l A = r A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaadaWfqaqaaabaaaaaaaaapeGaeyyLIumal8aabaWdbiaadY gacqGHKjYOcaWGmbaapaqabaGcpeGaamOCa8aadaqhaaWcbaWdbiaa dYgaa8aabaWdbiaadgeaaaGcpaGaaGPaV=qacqGH9aqpcaaMe8Uaam OCa8aadaahaaWcbeqaa8qacaWGbbaaaaaa@59CA@  — результирующее р-адическое число, полученное по правилу сложения р-адических чисел r l A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qacaWGSbaapa qaa8qacaWGbbaaaaaa@4D7A@  для всех уровней lL, LN. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMe8UaeyizImQaaGjbVlaadY eacaGGSaGaaqoOaiaaysW7caWGmbGaaGjbVlabgIGiolaaysW7caWG obGaaiOlaaaa@5BA9@  Если для подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  рассматривается конечное множество р-адических шаров U ε apr (A)U(A), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqzpa WaaSbaaWqaa8qacaWGHbGaamiCaiaadkhaa8aabeaaaSqabaGcpeGa aiikaiaadgeacaGGPaGaeyOHI0SaamyvaiaacIcacaWGbbGaaiykai aacYcaaaa@5848@  которое аппроксимирует множество AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  с точностью εapr, то результатом р-адического сложения L р-адических чисел r l A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qacaWGSbaapa qaa8qacaWGbbaaaaaa@4D7A@  будет р-адическое число r A = j=L + ( q j p j ), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadkhapaWaaWbaaSqabeaapeGa amyqaaaak8aacaaMc8+dbiabg2da9iaaygW7daGfWbqabSWdaeaape GaamOAaiabg2da9iabgkHiTiaadYeaa8aabaWdbiabgUcaRiabg6Hi Lcqdpaqaa8qacqGHris5aaGccaGGOaGaamyCa8aadaWgaaWcbaWdbi aadQgaa8aabeaakiaaysW7peGaeyyXICTaaGjbVlaadchapaWaaWba aSqabeaapeGaamOAaaaakiaacMcacaGGSaaaaa@5901@  где L= log p min i= 1, N A ¯ ε i ,  ε i ε apr MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYeacaaMe8Uaeyypa0JaaGjbVlabgk HiTiGacYgacaGGVbGaai4za8aadaWgaaWcbaWdbiaadchaa8aabeaa kmaaxababaWdbiGac2gacaGGPbGaaiOBaaWcpaqaa8qacGaGKoyAai adasQH9aqppaWaiaiPnaaabGaGK+qacGaGKIymaiacasQGSaGaiaiP d6eapaWaiaiPBaaameacas6dbiacas6GbbaapaqajaiPaaaaaSqaba GcpeGaeqyTdu2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYca caa5GcGaaGjbVlaaykW7cqaH1oqzpaWaaSbaaSqaa8qacaWGPbaapa qabaGccaaMe8+dbiabgwMiZkaaysW7cqaH1oqzpaWaaSbaaSqaa8qa caWGHbGaamiCaiaadkhaa8aabeaaaaa@7F41@ . Исходя из свойства ограниченности нечеткой меры g(A)1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamyqaiaacMcacqGHKj YOcaaIXaaaaa@4FDB@  следует, что j=L + ( q j p j )1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQbGaeyypa0 JaeyOeI0IaamitaaWdaeaapeGaey4kaSIaeyOhIukan8aabaWdbiab ggHiLdaakiaacIcacaWGXbWdamaaBaaaleaapeGaamOAaaWdaeqaaO GaaGjbV=qacqGHflY1caaMe8UaamiCa8aadaahaaWcbeqaa8qacaWG QbaaaOGaaiykaiabgsMiJkaaigdaaaa@60D8@ , а следовательно, j0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadQgacqGHKjYOcaaIWaaaaa@4DBF@  и q 0 0,1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaaIWaaapa qabaGccaaMe8+dbiabgIGiopaacmaapaqaa8qacaaIWaGaaiilaiaa igdaaiaawUhacaGL9baacaGGUaaaaa@54BD@  Тогда можем записать

  r A = j=L 1 ( q j p j ),  q 0 =0; 1,  q 0 =1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DamXvP5Mu1n3CPfMBaeHb tngAV9gBc92BRnearqqtubsr4rNCHbGeaGqik81rpu0dbbf9q8WrFf euY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir=xcvk9FHe9v8qq aq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciaacaGaaeqaba WaaqGafaaakeaaqaaaaaaaaaWdbiaadkhapaWaaWbaaSqabeaapeGa amyqaaaak8aacaaMc8+dbiabg2da9maaceaapaqaauaabaqaceaaae aapeWaaybCaeqal8aabaWdbiaadQgacqGH9aqpcqGHsislcaWGmbaa paqaa8qacqGHsislcaaIXaaan8aabaWdbiabggHiLdaak8aacaGGOa WdbiaadghapaWaaSbaaSqaa8qacaWGQbaapaqabaGccaaMe8+dbiab gwSixlaaysW7caWGWbWdamaaCaaaleqabaWdbiaadQgaaaGcpaGaaG zaVlaacMcapeGaaiilaiaaKdkacaaMe8UaaGPaVlaadghapaWaaSba aSqaa8qacaaIWaaapaqabaGccaaMc8+dbiabg2da9iaaysW7caaIWa Gaai4oaaWdaeaapeGaaGymaiaacYcacaa5GcGaaGjbVlaadghapaWa aSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymaiaacYcaaa aacaGL7baaaaa@6F63@

где j=L 1 ( q j p j ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQbGaeyypa0 JaeyOeI0IaamitaaWdaeaapeGaeyOeI0IaaGymaaqdpaqaa8qacqGH ris5aaGccaGGOaGaamyCa8aadaWgaaWcbaWdbiaadQgaa8aabeaaki aaykW7peGaeyyXICTaaGPaVlaadchapaWaaWbaaSqabeaapeGaamOA aaaakiaacMcaaaa@5DB9@  является дробным р-адическим числом [13].

Следствие. Мера подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  для равномерной нечеткой меры вероятности на р-адических шарах Pr(): 2 I [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaaiikaiabgwSixlaacM cacaaMc8UaaiOoaiaaikdapaWaaWbaaSqabeaapeGaamysaaaak8aa caaMb8+dbiabgkziUkaaysW7caGGBbGaaGimaiaacYcacaaIXaGaai yxaaaa@5D01@  определяется пределом по р-адической норме последовательности р-адического числа r A = j=L + ( q j p j ),  q l 0,1,,p1 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaWbaaSqabeaapeGaamyqaa aak8aacaaMe8+dbiabg2da9iaaykW7daGfWbqabSWdaeaapeGaamOA aiabg2da9iabgkHiTiaadYeaa8aabaWdbiabgUcaRiabg6HiLcqdpa qaa8qacqGHris5aaGccaGGOaGaamyCa8aadaWgaaWcbaWdbiaadQga a8aabeaakiaaysW7peGaeyyXICTaaGjbVlaadchapaWaaWbaaSqabe aapeGaamOAaaaakiaacMcacaGGSaGaaqoOaiaaysW7caaMc8UaamyC a8aadaWgaaWcbaWdbiaadYgaa8aabeaakiaaysW7peGaeyicI4SaaG jbVpaacmaapaqaa8qacaaIWaGaaiilaiaaigdacaGGSaGaeyOjGWRa aiilaiaadchacqGHsislcaaIXaaacaGL7bGaayzFaaGaaiilaaaa@7BAF@  где ql — коэффициенты канонического разложения результирующего р-адического числа rA, полученного по правилу сложения р-адических чисел r l A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qacaWGSbaapa qaa8qacaWGbbaaaaaa@4D7A@  для всех уровней разложения lL, LN, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMe8UaeyizImQaaGjbVlaadY eacaGGSaGaaqoOaiaaysW7caWGmbGaaGjbVlabgIGiolaaysW7caWG obGaaGzaVlaacYcaaaa@5D31@  где r l A = j=l + ( b j l p j ), b j l = b n l , j=nl, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qacaWGSbaapa qaa8qacaWGbbaaaOWdaiaaykW7peGaeyypa0JaaGPaVpaawahabeWc paqaa8qacaWGQbGaeyypa0JaeyOeI0IaamiBaaWdaeaapeGaey4kaS IaeyOhIukan8aabaWdbiabggHiLdaakiaacIcacaWGIbWdamaaDaaa leaapeGaamOAaaWdaeaapeGaamiBaaaak8aacaaMe8+dbiabgwSixl aaysW7caWGWbWdamaaCaaaleqabaWdbiaadQgaaaGccaGGPaGaaiil aiaaysW7caaMc8UaamOya8aadaqhaaWcbaWdbiaadQgaa8aabaWdbi aadYgaaaGcpaGaaGjbV=qacqGH9aqpcaaMe8UaamOya8aadaqhaaWc baWdbiaad6gaa8aabaWdbiaadYgaaaGccaGGSaGaaqoOaiaaysW7ca aMc8UaamOAaiaaysW7cqGH9aqpcaaMe8UaamOBaiabgkHiTiaadYga caGGSaaaaa@8349@  а b n l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkgapaWaa0baaSqaa8qacaWGUbaapa qaa8qacaWGSbaaaaaa@4D97@  — коэффициенты в позиционной р-адической системе счисления для числа a l =Card( U l (A)). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qacaWGSbaapa qabaGccaaMe8+dbiabg2da9iaadoeacaWGHbGaamOCaiaadsgacaGG OaGaamyva8aadaWgaaWcbaWdbiaadYgaa8aabeaak8qacaGGOaGaam yqaiaacMcacaGGPaGaaGPaVlaac6caaaa@5AC1@  

Доказательство. Мера вероятности шара U ε i ( r i ) U l (A) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqzpa WaaSbaaWqaa8qacaWGPbaapaqabaaaleqaaOGaaGzaV=qacaGGOaGa amOCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaGaeyicI4 Saamyva8aadaWgaaWcbaWdbiacOb4GSbaapaqabaGcpeGaaiikaiaa dgeacaGGPaaaaa@5AA9@  равна p l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadchapaWaaWbaaSqabeaapeGaeyOeI0 IaamiBaaaaaaa@4D80@ . Шары из множества U(A) не пересекаются, поэтому имеем:

  Pr U l A = U ε i r i U l A Pr U ε i r i = a l p l = = p l n=0 + b n l p n = j=l + b j l p j = r l A , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaamiuaiaadkhadaqadaWdaeaape Gaamyva8aadaWgaaWcbaWdbiaadYgaa8aabeaak8qadaqadaWdaeaa peGaamyqaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9maawa fabeWcpaqaa8qacaWGvbWdamaaBaaameaapeGaeqyTdu2damaaBaaa baWdbiaadMgaa8aabeaaaeqaaSWdbmaabmaapaqaa8qacaWGYbWdam aaBaaameaapeGaamyAaaWdaeqaaaWcpeGaayjkaiaawMcaaiabgIGi olaadwfapaWaaSbaaWqaa8qacaWGSbaapaqabaWcpeWaaeWaa8aaba WdbiaadgeaaiaawIcacaGLPaaaaeqan8aabaWdbiabggHiLdaakiaa dcfacaWGYbWaaeWaa8aabaWdbiaadwfapaWaaSbaaSqaa8qacqaH1o qzpaWaaSbaaWqaa8qacaWGPbaapaqabaaaleqaaOWdbmaabmaapaqa a8qacaWGYbWdamaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkai aawMcaaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaWGHbWd amaaBaaaleaapeGaamiBaaWdaeqaaaGcbaWdbiaadchapaWaaWbaaS qabeaapeGaamiBaaaaaaGccqGH9aqpaeaacqGH9aqpcaWGWbWdamaa CaaaleqabaWdbiabgkHiTiaadYgaaaGcdaGfWbqabSWdaeaapeGaam OBaiabg2da9iaaicdaa8aabaWdbiabgUcaRiabg6HiLcqdpaqaa8qa cqGHris5aaGcdaqadaWdaeaapeGaamOya8aadaqhaaWcbaWdbiaad6 gaa8aabaWdbiaadYgaaaGccqGHflY1caWGWbWdamaaCaaaleqabaWd biaad6gaaaaakiaawIcacaGLPaaacqGH9aqpdaGfWbqabSWdaeaape GaamOAaiabg2da9iabgkHiTiaadYgaa8aabaWdbiabgUcaRiabg6Hi Lcqdpaqaa8qacqGHris5aaGcdaqadaWdaeaapeGaamOya8aadaqhaa WcbaWdbiaadQgaa8aabaWdbiaadYgaaaGccqGHflY1caWGWbWdamaa CaaaleqabaWdbiaadQgaaaaakiaawIcacaGLPaaacqGH9aqpcaWGYb WdamaaDaaaleaapeGaamiBaaWdaeaapeGaamyqaaaakiaacYcaaaaa @A443@

где b j l = b n l , j=nl. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkgapaWaa0baaSqaa8qacaWGQbaapa qaa8qacaWGSbaaaOWdaiaaykW7peGaeyypa0JaaGjbVlaadkgapaWa a0baaSqaa8qacaWGUbaapaqaa8qacaWGSbaaaOGaaiilaiaaKdkaca aMe8UaaGPaVlaadQgacaaMe8Uaeyypa0JaaGjbVlaad6gacqGHsisl caWGSbGaaiOlaaaa@62FA@  Множества U l (A)U(A) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaiGgGBaaaleacOb4dbiacOb 4GSbaapaqajGgGaOWdbiaacIcacaWGbbGaaiykaiabgAOinlaadwfa caGGOaGaamyqaiaacMcaaaa@5779@  для любых уровней l также между собой не пересекаются. Поэтому можем записать:

  Pr U A = l=0 + Pr U l A = = r 0 A r 1 A r 2 A = r A = j=L + q j p j , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaamiuaiaadkhadaqadaWdaeaape Gaamyvamaabmaapaqaa8qacaWGbbaacaGLOaGaayzkaaaacaGLOaGa ayzkaaGaeyypa0ZaaybCaeqal8aabaWdbiaadYgacqGH9aqpcaaIWa aapaqaa8qacqGHRaWkcqGHEisPa0WdaeaapeGaeyyeIuoaaOGaamiu aiaadkhadaqadaWdaeaapeGaamyva8aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qadaqadaWdaeaapeGaamyqaaGaayjkaiaawMcaaaGaayjk aiaawMcaaiabg2da9aqaaiabg2da9iaadkhapaWaa0baaSqaa8qaca aIWaaapaqaa8qacaWGbbaaaOGaeyyLIuSaamOCa8aadaqhaaWcbaWd biaaigdaa8aabaWdbiaadgeaaaGccqGHvksXcaWGYbWdamaaDaaale aapeGaaGOmaaWdaeaapeGaamyqaaaakiabgwPiflabl+Uimjabg2da 9iaadkhapaWaaWbaaSqabeaapeGaamyqaaaakiabg2da9maawahabe Wcpaqaa8qacaWGQbGaeyypa0JaeyOeI0IaamitaaWdaeaapeGaey4k aSIaeyOhIukan8aabaWdbiabggHiLdaakmaabmaapaqaa8qacaWGXb WdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabgwSixlaadchapaWa aWbaaSqabeaapeGaamOAaaaaaOGaayjkaiaawMcaaiaacYcaaaaa@8AE5@

где ql — коэффициенты канонического разложения результирующего р-адического числа rA, полученного по правилу сложения р-адических чисел rlA для всех уровней разложения lL, LN. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMe8UaeyizImQaaGjbVlaadY eacaGGSaGaaqoOaiaaysW7caWGmbGaaGjbVlabgIGiolaaysW7caWG obGaaGzaVlaac6caaaa@5D33@  Мера Pr(U(A)) равна пределу по р-адической норме последовательности, представляющей р-адическое число rA.

Пример 1. Рассмотрим пример расчета равномерной р-адической меры (при p =3) для подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacqGHgksZcaWGjbaaaa@4DF6@ , которое представлено множеством р-адических шаров

  U(A)= U 1 3 ( r 0,1 ),  U 1 9 ( r 0, 0, 1 ), U 1 9 ( r 0, 0, 2 ), U 1 9 ( r 0, 2, 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfacaGGOaGaamyqaiaacMcacqGH9a qpdaGadeWdaeaapeGaamyva8aadaWgaaWcbaWdbmaalaaapaqaa8qa caaIXaaapaqaa8qacaaIZaaaaaWdaeqaaOGaaiika8qacaWGYbWdam aaBaaaleaapeGaaGimaiaacYcacaaIXaaapaqabaGccaGGPaWdbiaa cYcacaa5GcGaamyva8aadaWgaaWcbaWdbmaalaaapaqaa8qacaaIXa aapaqaa8qacaaI5aaaaaWdaeqaaOGaaiika8qacaWGYbWdamaaBaaa leaapeGaaGimaiaacYcacaa5GcGaaGimaiaacYcacaa5GcGaaGymaa WdaeqaaOGaaiyka8qacaGGSaGaamyva8aadaWgaaWcbaWdbmaalaaa paqaa8qacaaIXaaapaqaa8qacaaI5aaaaaWdaeqaaOGaaiika8qaca WGYbWdamaaBaaaleaapeGaaGimaiaacYcacaa5GcGaaGimaiaacYca caa5GcGaaGOmaaWdaeqaaOGaaiyka8qacaGGSaGaamyva8aadaWgaa WcbaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaI5aaaaaWdaeqa aOGaaiika8qacaWGYbWdamaaBaaaleaapeGaaGimaiaacYcacaa5Gc GaaGOmaiaacYcacaa5GcGaaGimaaWdaeqaaOGaaiykaaWdbiaawUha caGL9baaaaa@81B1@ ,

где r 0,1 = (0 1 2 2) 3 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaai ilaiaaigdaa8aabeaakiaaysW7peGaeyypa0JaaGjbVlaacIcacaaI WaGaaqoOaiaaigdacaa5GcGaaGOmaiaaKdkacaaIYaGaeyOjGWRaai yka8aadaWgaaWcbaWdbiaaiodaa8aabeaakiaacYcaaaa@5E48@   r 0, 0, 1 = (0 0 1 2) 3 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaai ilaiaaKdkacaaIWaGaaiilaiaaKdkacaaIXaaapaqabaGccaaMe8+d biabg2da9iaaysW7caGGOaGaaGimaiaaKdkacaaIWaGaaqoOaiaaig dacaa5GcGaaGOmaiabgAci8kaacMcapaWaaSbaaSqaa8qacaaIZaaa paqabaGccaGGSaaaaa@62BC@   r 0, 0, 2 = (0 0 2 2 ) 3 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaai ilaiaaKdkacaaIWaGaaiilaiaaKdkacaaIYaaapaqabaGccaaMe8+d biabg2da9iaaysW7caGGOaGaaGimaiaaKdkacaaIWaGaaqoOaiaaik dacaa5GcGaaGOmaiaaKdkacqGHMacVcaGGPaWdamaaBaaaleaapeGa aG4maaWdaeqaaOGaaiilaaaa@6444@ r 0, 0, 2 = (0 0 2 2 ) 3 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaai ilaiaaKdkacaaIWaGaaiilaiaaKdkacaaIYaaapaqabaGccaaMe8+d biabg2da9iaaysW7caGGOaGaaGimaiaaKdkacaaIWaGaaqoOaiaaik dacaa5GcGaaGOmaiaaKdkacqGHMacVcaGGPaWdamaaBaaaleaapeGa aG4maaWdaeqaaOGaaiilaaaa@6444@   r 0, 2, 0 = (0 2 0 2 ) 3 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaai ilaiaaKdkacaaIYaGaaiilaiaaKdkacaaIWaaapaqabaGccaaMe8+d biabg2da9iaaysW7caGGOaGaaGimaiaaKdkacaaIYaGaaqoOaiaaic dacaa5GcGaaGOmaiaaKdkacqGHMacVcaGGPaWdamaaBaaaleaapeGa aG4maaWdaeqaaOGaaiOlaaaa@6446@  Пусть λ=0.7. В соответствии с Утверждением 1 меры р-адических шаров из множества U(A) будут g( r 0,1 )0.2764, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaaicdacaGGSaGaaGymaaWdaeqaaOWdbiaacMcacaaMe8Uaeyyr IaKaaGjbVlaaicdacaGGUaGaaGOmaiaaiEdacaaI2aGaaGinaiaacY caaaa@599A@   g( r 0, 0, 1 )=g( r 0, 0, 2 )=g( r 0, 2,0 )0.0868. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaaicdacaGGSaGaaqoOaiaaicdacaGGSaGaaqoOaiaaigdaa8aa beaak8qacaGGPaGaaGjbVlabg2da9iaaysW7caWGNbWdaiaacIcape GaamOCa8aadaWgaaWcbaWdbiaaicdacaGGSaGaaqoOaiaaicdacaGG SaGaaqoOaiaaikdaa8aabeaakiaacMcacaaMe8+dbiabg2da9iaays W7caWGNbGaaiikaiaadkhapaWaaSbaaSqaa8qacaaIWaGaaiilaiaa KdkacaaIYaGaaiilaiaaicdaa8aabeaak8qacaGGPaGaaGjbVlabgw KiajaaysW7caaIWaGaaiOlaiaaicdacaaI4aGaaGOnaiaaiIdacaaM c8UaaiOlaaaa@7B11@  При этом g(r0)=1. Множество U(A) по уровням l распределяется в виде:

  U 0 (A)=, U 1 A = U 1 3 ( r 0,1 ) ,  U 2 (A)= =   U 1 9 ( r 0, 0, 1 ), U 1 9 ( r 0, 0, 2 ), U 1 9 ( r 0, 2, 0 ) . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaamyva8aadaWgaaWcbaWdbiaaic daa8aabeaak8qacaGGOaGaamyqaiaacMcacqGH9aqpcqGHfiIXcaGG SaGaamyva8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdae aapeGaamyqaaGaayjkaiaawMcaaiabg2da9maacmqapaqaa8qacaWG vbWdamaaBaaaleaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaio daaaaapaqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaaIWaGa aiilaiaaigdaa8aabeaak8qacaGGPaaacaGL7bGaayzFaaGaaiilai aaKdkacaaMe8Uaamyva8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qa caGGOaGaamyqaiaacMcacqGH9aqpaeaacqGH9aqpdaGadeWdaeaape GaaqoOaiaadwfapaWaaSbaaSqaa8qadaWcaaWdaeaapeGaaGymaaWd aeaapeGaaGyoaaaaa8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcba WdbiaaicdacaGGSaGaaqoOaiaaicdacaGGSaGaaqoOaiaaigdaa8aa beaak8qacaGGPaGaaiilaiaadwfapaWaaSbaaSqaa8qadaWcaaWdae aapeGaaGymaaWdaeaapeGaaGyoaaaaa8aabeaakiaacIcapeGaamOC a8aadaWgaaWcbaWdbiaaicdacaGGSaGaaqoOaiaaicdacaGGSaGaaq oOaiaaikdaa8aabeaakiaacMcapeGaaiilaiaadwfapaWaaSbaaSqa a8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGyoaaaaa8aabeaaki aacIcapeGaamOCa8aadaWgaaWcbaWdbiaaicdacaGGSaGaaqoOaiaa ikdacaGGSaGaaqoOaiaaicdaa8aabeaakiaacMcaa8qacaGL7bGaay zFaaGaaiOlaaaaaa@96D8@

Тогда, a 0 =Card( U 0 (A))=0,  a 1 =1, a 3 =3. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qacaaIWaaapa qabaGccaaMc8+dbiabg2da9iaadoeacaWGHbGaamOCaiaadsgacaGG OaGaamyva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaGaam yqaiaacMcacaGGPaGaaGjbVlabg2da9iaaysW7caaIWaGaaiilaiaa ysW7caa5GcGaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaakiaays W7peGaeyypa0JaaGjbVlaaigdacaGGSaGaaGjbVlaadggapaWaaSba aSqaa8qacaaIZaaapaqabaGccaaMe8+dbiabg2da9iaaysW7caaIZa GaaiOlaaaa@7184@  И, следовательно,   r 0 A =0, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaaKdkacaWGYbWdamaaDaaaleaapeGaaG imaaWdaeaapeGaamyqaaaak8aacaaMc8+dbiabg2da9iaaysW7caaI WaGaaiilaaaa@547A@   r 1 A = (0 1 0 0) 3 , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qacaaIXaaapa qaa8qacaWGbbaaaOWdaiaaykW7peGaeyypa0JaaGjbVlaacIcacaaI WaGaaqoOaiaaigdacaa5GcGaaGimaiaaKdkacaaIWaGaeyOjGWRaai yka8aadaWgaaWcbaWdbiaaiodaa8aabeaakiaacYcaaaa@5DBE@   r 2 A = (0 1 0 0) 3 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qacaaIYaaapa qaa8qacaWGbbaaaOWdaiaaykW7peGaeyypa0JaaGjbVlaacIcacaaI WaGaaqoOaiaaigdacaa5GcGaaGimaiaaKdkacaaIWaGaeyOjGWRaai yka8aadaWgaaWcbaWdbiaaiodaa8aabeaakiaac6caaaa@5DC1@  Выполнив сложение r l A , l=0,1,2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qacaWGSbaapa qaa8qacaWGbbaaaOWdaiaaygW7peGaaiilaiaaKdkacaaMc8UaamiB aiaaysW7cqGH9aqpcaaMe8UaaGimaiaacYcacaaIXaGaaiilaiaaik daaaa@5B90@  по правилу сложения р-адических чисел, получим r A = (0 2 0 0) 3 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaWbaaSqabeaapeGaamyqaa aak8aacaaMc8+dbiabg2da9iaacIcacaaIWaGaaqoOaiaaikdacaa5 GcGaaGimaiaaKdkacaaIWaGaeyOjGWRaaiyka8aadaWgaaWcbaWdbi aaiodaa8aabeaakiaac6caaaa@5B5A@  Пределом последовательности будет 2 3 1 =2/3 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaaikdacqGHflY1caaIZaWdamaaCaaale qabaWdbiabgkHiTiaaigdaaaGcpaGaaGPaV=qacqGH9aqpdaWcgaqa aiaaikdaaeaacaaIZaaaaiaac6caaaa@5513@  Тогда мера подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaaGPaVlabgAOinlaays W7caWGjbaaaa@529B@  в соответствии с Утверждением 2 будет

  g A = 1 0.7 1+0.7 2 3 1 =0.6063 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgadaqadaWdaeaapeGaamyqaaGaay jkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaI WaGaaiOlaiaaiEdaaaGaeyyXIC9aaiWaa8aabaWdbmaabmaapaqaa8 qacaaIXaGaey4kaSIaaGimaiaac6cacaaI3aaacaGLOaGaayzkaaWd amaaCaaaleqabaWdbmaalaaapaqaa8qacaaIYaaapaqaa8qacaaIZa aaaaaakiabgkHiTiaaigdaaiaawUhacaGL9baacqGH9aqpcaaIWaGa aiOlaiaaiAdacaaIWaGaaGOnaiaaiodaaaa@6531@ .

В данном примере при фиксированном параметре λ равномерная р-адическая мера совпадает с обычной равномерной нечеткой мерой, что полностью подтверждает правомочность Утверждения 1.

Неоднородная нечеткая мера на р-адических шарах. Использование равномерной нечеткой меры на р-адических шарах на практике затруднительно. Прежде всего, это связано с тем, что данная мера не позволяет учитывать различные распределения неопределенности на множестве I. Это приводит к большим ошибкам при моделировании неопределенности в практических задачах. Кроме этого, при увеличении уровня l мера р-адических шаров g( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbe aak8qacaGGPaaaaa@5563@  убывает экспоненциально. Это серьезно затрудняет ее идентификацию на основе существующих методов [19]. Опыт использования нечетких мер при моделировании в условиях неопределенности показывает, что для каждого множества равных по покрытию р-адических шаров U( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaiuaaqaaaaaaaaaWdbiab=rr8vjaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGG SaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOWdbiaacMcaaaa@575B@  мера должна иметь возможность принимать значения во всем интервале [0, 1]. Это позволяет не привязываться к изначально заданному уровню l=0, обеспечить возможность идентификации меры известными методами, а также практичность ее использования.

Ранее мы рассматривали равномерную нечет- кую меру на р-адических шарах, для которой U( r q 0 , q l1 ), l=0,,+,  q l ,g( r q 0 ,, q l )=const, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIGqbaiab=rr8vjaacIcacaWGYb WdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaa l8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHsi slcaaIXaaapaqabaaaleqaaOWdbiaacMcacaGGSaGaaGjbVlaaKdka caWGSbGaaGjbVlabg2da9iaaysW7caaIWaGaaiilaiabgAci8kaacY cacqGHRaWkcqGHEisPcaGGSaGaaqoOaiabgcGiIiaadghapaWaaSba aSqaa8qacaWGSbaapaqabaGcpeGaaiilaiaadEgacaGGOaGaamOCa8 aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWc peGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaa WdaeqaaaWcbeaak8qacaGGPaGaaGjbVlabg2da9iaaysW7caqGJbGa ae4Baiaab6gacaqGZbGaaeiDaiaacYcaaaa@8193@  а параметр l,λ=const. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadYgacaGGSaGaeq4UdWMaaG jbVlabg2da9iaaysW7ciGGJbGaai4Baiaac6gacaGGZbGaaiiDaiaa c6caaaa@5814@  Далее определим неоднородную нечеткую меру на р-адических шарах. Сначала рассмотрим случай, когда параметр λ зависит только от уровня l, λ l [1,+[,  λ l =var, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgcGiIiaadYgacaGGSaGaaGjbVlabeU 7aS9aadaWgaaWcbaWdbiaadYgaa8aabeaakiaaykW7peGaeyicI4Sa aGjbVlaacUfacqGHsislcaaIXaGaaiilaiabgUcaRiabg6HiLkaacU facaGGSaGaaqoOaiaaysW7cqaH7oaBpaWaaSbaaSqaa8qacaWGSbaa paqabaGccaaMe8+dbiabg2da9iaaysW7caqG2bGaaeyyaiaabkhaca GGSaaaaa@6AFB@  а мера равных по фиксированному покрытию шаров U p l ( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiac8c4GvbWdamaaBaaaleaapeGaiaiodc hapaWaiaioCaaameqcaItaiaiopeGamaiogkHiTiacaIZGSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaaaa@5EB4@  равномерная.

Утверждение 3. Нечеткая мера подмножества множества I, являющегося образом р-адического шара U p l ( r q 0 , q l ), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiac8c4GvbWdamaaBaaaleaapeGaiaiodc hapaWaiaioCaaameqcaItaiaiopeGamaiogkHiTiacaIZGSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWdamaa BaaameaapeGaamiBaaWdaeqaaaWcbeaak8qacaGGPaGaaGPaVlaacY caaaa@603F@  для неравномерной по уровням l нечеткой меры на р-адических шарах с изменяющимся по уровням параметром λl определяется соотношением:

  g( r q 0 ,, q l )= 1 λ l 1+ f l 1/p 1 ; f l = λ l λ l1 (1+ f l1 ) 1/p 1 = λ l g( r q 0 ,, q l1 ), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbmaaceaapaabaeqabaWdbiaadEgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaaWdaeqaaaWcbeaak8qacaGGPaGaeyypa0ZaaSaaa8aabaWd biaaigdaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8aabe aaaaGcpeGaeyyXIC9aaiWab8aabaWdbmaabmaapaqaa8qacaaIXaGa ey4kaSIaamOza8aadaWgaaWcbaWdbiaadYgaa8aabeaaaOWdbiaawI cacaGLPaaapaWaaWbaaSqabeaapeWaaSGbaeaacaaIXaaabaGaamiC aaaaaaGccqGHsislcaaIXaaacaGL7bGaayzFaaGaai4oaaqaaiaadA gapaWaaSbaaSqaa8qacaWGSbaapaqabaGccaaMe8+dbiabg2da9iaa ysW7daWcaaWdaeaapeGaeq4UdW2damaaBaaaleaapeGaamiBaaWdae qaaaGcbaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgacqGHsislcaaI XaaapaqabaaaaOWdbiabgwSixpaabmqapaqaa8qacaGGOaGaaGymai abgUcaRiaadAgapaWaaSbaaSqaa8qacaWGSbGaeyOeI0IaaGymaaWd aeqaaOWdbiaacMcadaahaaWcbeqaamaalyaabaGaaGymaaqaaiaadc haaaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabg2da9iabeU7a S9aadaWgaaWcbaWdbiaadYgaa8aabeaak8qacqGHflY1caWGNbWdai aacIcapeGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qa caaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBa aameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGccaGGPaWd biaacYcaaaGaay5Eaaaaaa@9B5F@

где l=0,,+,  λ l [1,+[, g( r q 0 ,, q l )[0,1], g( r q 0 )= MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMc8Uaeyypa0JaaGjbVlaaic dacaGGSaGaeyOjGWRaaiilaiabgUcaRiabg6HiLkaacYcacaa5GcGa aGjbVlabeU7aS9aadaWgaaWcbaWdbiaadYgaa8aabeaakiaaykW7pe GaeyicI4SaaGjbVlaacUfacqGHsislcaaIXaGaaiilaiabgUcaRiab g6HiLkaacUfacaGGSaGaaqoOaiaaysW7caWGNbGaaiikaiaadkhapa WaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWd biaacYcacqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgaa8 aabeaaaSqabaGcpeGaaiykaiaaysW7cqGHiiIZcaaMe8Uaai4waiaa icdacaGGSaGaaGymaiaac2facaGGSaGaaqoOaiaaysW7caWGNbGaai ikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGim aaWdaeqaaaWcbeaak8qacaGGPaGaaGjbVlabg2da9aaa@8AA1@ =1,  f 1 = λ 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabg2da9iaaysW7caaIXaGaaiilaiaaKd kacaaMe8UaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaakiaaykW7 peGaeyypa0JaaGjbVlabeU7aS9aadaWgaaWcbaWdbiaaigdaa8aabe aakiaac6caaaa@5B2F@

Доказательство. Сохраним ранее описанную процедуру построения нечеткой меры на р-адических шарах. Тогда на уровне l=1 равномерная нечеткая мера р-адического шара будет:

  g( r q 0 , q 1 )= 1 λ 1 1+ λ 1 1 p 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiaa dghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaacMcacq GH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeq4UdW2damaaBaaa leaapeGaaGymaaWdaeqaaaaak8qacqGHflY1daGadaWdaeaapeWaae Waa8aabaWdbiaaigdacqGHRaWkcqaH7oaBpaWaaSbaaSqaa8qacaaI Xaaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaala aapaqaa8qacaaIXaaapaqaa8qacaWGWbaaaaaakiabgkHiTiaaigda aiaawUhacaGL9baacaGGUaaaaa@6751@

Для согласованности меры на l=2 должно выполняться условие:

  1 λ 2 (1+ λ 2 g( r q 0 , q 1 , q 2 )) p 1 = = 1 λ 1 1+ λ 1 1 p 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeWaaSaaa8aabaWdbiaaigdaa8aaba WdbiabeU7aS9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeGaeyyX IC9aaiWaa8aabaGaaiika8qacaaIXaGaey4kaSIaeq4UdW2damaaBa aaleaapeGaaGOmaaWdaeqaaOWdbiabgwSixlaadEgacaGGOaGaamOC a8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqaba WcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGa aiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbi aacMcapaGaaiykamaaCaaaleqabaWdbiaadchaaaGccqGHsislcaaI XaaacaGL7bGaayzFaaGaeyypa0dabaGaeyypa0ZaaSaaa8aabaWdbi aaigdaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaaigdaa8aabeaa aaGcpeGaeyyXIC9aaiWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaey 4kaSIaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaamiCaaaaaaGccqGHsislcaaIXaaacaGL7bGaayzFaaGaaiOl aaaaaa@7ED5@

Отсюда значение меры шара U p 2 ( r q 0 , q 1 , q 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiac8c4GvbWdamaaBaaaleaapeGaiairdc hapaWaiairCaaameqcasuaiairpeGamairgkHiTiacaseIYaaaaaWc paqabaGccaGGOaWdbiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaa peGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaG OmaaWdaeqaaaWcbeaakiaacMcaaaa@5F1B@  на уровне l=2 будет:

  g( r q 0 , q 1 , q 2 )= 1 λ 2 λ 2 λ 1 (1+ λ 1 ) 1 p 1 +1 1 p 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiaa dghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapa WaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaacMcacqGH9aqp daWcaaWdaeaapeGaaGymaaWdaeaapeGaeq4UdW2damaaBaaaleaape GaaGOmaaWdaeqaaaaak8qacqGHflY1daGadeWdaeaapeWaamWab8aa baWdbmaalaaapaqaa8qacqaH7oaBpaWaaSbaaSqaa8qacaaIYaaapa qabaaakeaapeGaeq4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaaaa k8qacqGHflY1daqadeWdaeaacaGGOaWdbiaaigdacqGHRaWkcqaH7o aBpaWaaSbaaSqaa8qacaaIXaaapaqabaGccaGGPaWaaWbaaSqabeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadchaaaaaaOGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdaaiaawUfacaGLDbaa paWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadc haaaaaaOWdaiaaygW7peGaeyOeI0IaaGymaaGaay5Eaiaaw2haaiaa c6caaaa@7CFA@

Введем в рассмотрение вспомогательную функцию fl вида:

  f l = λ 1 , l=1; λ l λ l1 1+ f l1 1/p 1 , l>1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGSbaapa qabaGccaaMe8+dbiabg2da9iaaysW7daGabiabaeqabaGaeq4UdW2d amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaaMe8UaaqoOai aadYgacaaMe8Uaeyypa0JaaGPaVlaaigdacaGG7aaabaWaaSaaa8aa baWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8aabeaaaOqaa8qacq aH7oaBpaWaaSbaaSqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaaa k8qacqGHflY1daqadeWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHRa WkcaWGMbWdamaaBaaaleaapeGaamiBaiabgkHiTiaaigdaa8aabeaa aOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSGbaeaacaaIXa aabaGaamiCaaaaaaGcpaGaaGzaV=qacqGHsislcaaIXaaacaGLOaGa ayzkaaGaaiilaiaaysW7caa5GcGaamiBaiaaysW7cqGH+aGpcaaMe8 UaaGymaiaac6caaaGaay5Eaaaaaa@820C@

Тогда значение меры g2 будет определяться соотношением:

  g( r q 0 , q 1 , q 2 )= 1 λ 2 1+ f 2 1 p 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiaa dghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapa WaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaacMcacqGH9aqp daWcaaWdaeaapeGaaGymaaWdaeaapeGaeq4UdW2damaaBaaaleaape GaaGOmaaWdaeqaaaaak8qacqGHflY1daGadaWdaeaapeWaaeWaa8aa baWdbiaaigdacqGHRaWkcaWGMbWdamaaBaaaleaapeGaaGOmaaWdae qaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaa peGaaGymaaWdaeaapeGaamiCaaaaaaGccqGHsislcaaIXaaacaGL7b GaayzFaaGaaiOlaaaa@6962@

Повторим процедуру для уровня l=3. Тогда:

  g( r q 0 , q 1 , q 2 , q 3 )= 1 λ 3 × × λ 3 λ 2 ( (1+ f 2 ) 1 p 1) f 3 +1 1 p 1 = = 1 λ 3 1+ f 3 1 p 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaam4zaiaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGG SaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaam yCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aa daWgaaadbaWdbiaaiodaa8aabeaaaSqabaGcpeGaaiykaiabg2da9m aalaaapaqaa8qacaaIXaaapaqaa8qacqaH7oaBpaWaaSbaaSqaa8qa caaIZaaapaqabaaaaOWdbiaaysW7cqGHxdaTaeaacqGHxdaTcaaMe8 +aaiWaa8aabaWdbmaadmqapaqaa8qadaagaaqaamaalaaapaqaa8qa cqaH7oaBpaWaaSbaaSqaa8qacaaIZaaapaqabaaakeaapeGaeq4UdW 2damaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qacqGHflY1caGGOaGa aiikaiaaigdacqGHRaWkcaWGMbWdamaaBaaaleaapeGaaGOmaaWdae qaaOWdbiaacMcapaWaaWbaaSqabeaapeWaiai4laaapaqaiai4peGa iai4igdaa8aabGaGG=qacGaGGpiCaaaaaaGccqGHsislcaaIXaGaai ykaaWcbaGaamOzamaaBaaameaacaaIZaaabeaaaOGaayjo+dGaey4k aSIaaGymaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qadaWcaaWdae aapeGaaGymaaWdaeaapeGaamiCaaaaaaGccqGHsislcaaIXaaacaGL 7bGaayzFaaGaeyypa0dabaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8 aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaaiodaa8aabeaaaaGcpeGa eyyXIC9aaiWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaam Oza8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPaaa paWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadc haaaaaaOGaeyOeI0IaaGymaaGaay5Eaiaaw2haaiaac6caaaaa@A108@

Таким образом, неравномерная по уровням l нечеткая мера на р-адических шарах с изменяющимся параметром λl для р-адического шара U p l ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiac8c4GvbWdamaaBaaaleaapeGaiairdc hapaWaiairCaaameqcasuaiairpeGamairgkHiTiacas0GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWdamaa BaaameaapeGaamiBaaWdaeqaaaWcbeaak8qacaGGPaaaaa@5E4C@  определяется системой рекуррентных уравнений:

  g( r q 0 ,, q l )= 1 λ l 1+ f l 1 p 1 ; f l = λ l λ l1 1+ f l1 1 p 1 = λ l g( r q 0 ,, q l1 ), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbmaaceaapaabaeqabaWdbiaadEgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaaWdaeqaaaWcbeaak8qacaGGPaGaeyypa0ZaaSaaa8aabaWd biaaigdaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8aabe aaaaGcpeGaeyyXIC9aaiWaa8aabaWdbmaabmaapaqaa8qacaaIXaGa ey4kaSIaamOza8aadaWgaaWcbaWdbiaadYgaa8aabeaaaOWdbiaawI cacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aa baWdbiaadchaaaaaaOGaeyOeI0IaaGymaaGaay5Eaiaaw2haaiaacU daa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGSbaapaqabaGcpeGa eyypa0ZaaSaaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaaaOqaa8qacqaH7oaBpaWaaSbaaSqaa8qacaWGSbGaeyOeI0Ia aGymaaWdaeqaaaaak8qacqGHflY1daqadaWdaeaapeWaaeWaa8aaba WdbiaaigdacqGHRaWkcaWGMbWdamaaBaaaleaapeGaamiBaiabgkHi Tiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadchaaaaaaOGaeyOeI0Ia aGymaaGaayjkaiaawMcaaiabg2da9iabeU7aS9aadaWgaaWcbaWdbi aadYgaa8aabeaak8qacqGHflY1caWGNbWdaiaacIcapeGaamOCa8aa daWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpe GaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiab gkHiTiaaigdaa8aabeaaaSqabaGccaGGPaWdbiaacYcaaaGaay5Eaa aaaa@9940@

где l=0,...,+,  λ l [1,+[, g( r q 0 ,, q l )[0,1], g( r q 0 )=  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMc8Uaeyypa0JaaGjbVlaaic dacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiabgUcaRiabg6HiLkaa cYcacaa5GcGaaGjbVlabeU7aS9aadaWgaaWcbaWdbiaadYgaa8aabe aakiaaykW7peGaeyicI4SaaGjbVlaacUfacqGHsislcaaIXaGaaiil aiabgUcaRiabg6HiLkaacUfacaGGSaGaaqoOaiaaysW7caWGNbGaai ikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGim aaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8aadaWgaaadba WdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaiaaysW7cqGHiiIZcaaM e8Uaai4waiaaicdacaGGSaGaaGymaiaac2facaGGSaGaaqoOaiaays W7caWGNbGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaaWcbeaak8qacaGGPaGaaGjbVlabg2da9i aaKdkaaaa@8CAF@   =1,  f 1 = λ 1 .  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabg2da9iaaysW7caaIXaGaaiilaiaaKd kacaaMe8UaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaakiaaykW7 peGaeyypa0JaaGjbVlabeU7aS9aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacaGGUaGaaqoOaaaa@5CC5@  

В общем случае для фиксированного уровня l нечеткая мера шара U p l ( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiairdc hapaWaiairCaaameqcasuaiairpeGamairgkHiTiacas0GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaaaa@5F08@  будет зависеть от последовательности λ l ( r q 0 ,, q l1 )[1,+[ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc peGaaiykaiaaysW7cqGHiiIZcaaMe8Uaai4waiabgkHiTiaaigdaca GGSaGaey4kaSIaeyOhIuQaai4waaaa@643F@ . В этом случае λ l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc peGaaiykaaaa@5938@  и вспомогательная функция f l ( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaaaa@56C7@  будут функциями р-адической координаты Se q l1 ( r q 0 ,, q l1 )=( q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadofacaWGLbGaamyCa8aadaWgaaWcba WdbiaadYgacqGHsislcaaIXaaapaqabaGccaGGOaWdbiaadkhapaWa aSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbi aacYcacqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGH sislcaaIXaaapaqabaaaleqaaOGaaiyka8qacqGH9aqpcaGGOaGaam yCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaeyOjGWRa aiilaiaadghapaWaaSbaaSqaa8qacaWGSbGaeyOeI0IaaGymaaWdae qaaOWdbiaacMcaaaa@6758@ . По мере увеличения уровня l мера g( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbe aak8qacaGGPaaaaa@5563@  шара U p l ( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiairdc hapaWaiairCaaameqcasuaiairpeGamairgkHiTiacas0GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaaaa@5F08@  уменьшается экспоненциально, что определяется ограничением g(U( r q 0 , q l1 ))=g( r q 0 ,, q l1 ). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiikaGqba8qacqWFueFvpa Gaaiika8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWd biaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaadba WdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGaaiykaiaacMca caaMe8+dbiabg2da9iaaysW7caWGNbGaaiikaiaadkhapaWaaSbaaS qaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYca cqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislca aIXaaapaqabaaaleqaaOWdbiaacMcacaaMc8UaaiOlaaaa@6CE5@  Однако связь между мерами на соседних уровнях может и не удовлетворять данному ограничению. В этом случае для обеспечения согласованности меры для всех шаров U p l ( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiairdc hapaWaiairCaaameqcasuaiairpeGamairgkHiTiacas0GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaaaa@5F08@  введем в рассмотрение функцию проектора (или просто проектор) Proj( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaam4BaiaadQgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGcpeGaaiykaaaa@59CE@  между уровнями l и l1 для конкретной р-адической координаты ( q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaacIcacaWGXbWdamaaBaaaleaapeGaaG imaaWdaeqaaOWdbiaacYcacqGHMacVcaGGSaGaamyCa8aadaWgaaWc baWdbiaadYgacqGHsislcaaIXaaapaqabaGcpeGaaiykaaaa@54CF@  так, чтобы выполнялось условие:

  g(U( r q 0 , q l1 ))= =Proj( r q 0 ,, q l1 )g( r q 0 ,, q l1 )[0,1]. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaam4za8aacaGGOaacfaWdbiab=r r8vjaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWd biaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaadba WdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOWdbiaacMcapaGa aiyka8qacqGH9aqpaeaacqGH9aqpcaWGqbGaamOCaiaad+gacaWGQb GaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGa aGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8aadaWgaa adbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOWdbiaacMca cqGHflY1caWGNbWdaiaacIcapeGaamOCa8aadaWgaaWcbaWdbiaadg hapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaa cYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabe aaaSqabaGccaGGPaWdbiabgIGiolaacUfacaaIWaGaaiilaiaaigda caGGDbGaaiOlaaaaaa@808D@

Тогда, учитывая доказательство Утверждения 3, неравномерная по уровням l нечеткая мера на р-ади­ческих шарах для фиксированного шара U p l ( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiairdc hapaWaiairCaaameqcasuaiairpeGamairgkHiTiacas0GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaaaa@5F08@  будет определяться системой рекуррентных уравнений вида:

  g( r q 0 ,, q l )= 1 λ l ( r q 0 ,, q l ) (1+ f l ( r q 0 ,, q l1 )) 1 p 1 ; f l ( r q 0 ,, q l1 )= λ l ( r q 0 ,, q l1 )Proj( r q 0 ,, q l1 )g( r q 0 ,, q l1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbmaaceGaeaqabeaacaWGNbGaaiikaiaadk hapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqa aSWdbiaacYcacqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadY gaa8aabeaaaSqabaGccaaMb8+dbiaacMcacqGH9aqpdaWcaaWdaeaa peGaaGymaaWdaeaapeGaeq4UdW2damaaBaaaleaapeGaamiBaaWdae qaaOWdbiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaad baWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapa WaaSbaaWqaa8qacaWGSbaapaqabaaaleqaaOGaaGzaV=qacaGGPaaa aiabgwSixpaacmaapaqaaiaacIcapeGaaGymaiabgUcaRiaadAgapa WaaSbaaSqaa8qacaWGSbaapaqabaGcpeGaaiikaiaadkhapaWaaSba aSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacY cacqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGHsisl caaIXaaapaqabaaaleqaaOWdbiaacMcapaGaaiykamaaCaaaleqaba Wdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGWbaaaaaakiabgkHi TiaaigdaaiaawUhacaGL9baacaGG7aaabaGaamOza8aadaWgaaWcba WdbiaadYgaa8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaa dghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8k aacYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aa beaaaSqabaGccaaMb8+dbiaacMcacaaMc8Uaeyypa0JaaGPaVlabeU 7aS9aadaWgaaWcbaWdbiaadYgaa8aabeaak8qacaGGOaGaamOCa8aa daWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpe GaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiab gkHiTiaaigdaa8aabeaaaSqabaGccaaMb8+dbiaacMcacaaMe8Uaey yXICTaaGjbVlaadcfacaWGYbGaam4BaiaadQgacaGGOaGaamOCa8aa daWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpe GaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiab gkHiTiaaigdaa8aabeaaaSqabaGcpeGaaiykaiaaykW7cqGHflY1ca aMc8Uaam4zaiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWg aaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadg hapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaa kiaaygW7peGaaiykaiaacYcaaaGaay5Eaaaaaa@D05A@

где l=0,,+, Proj( r q 0 ,, q l1 )g( r q 0 ,, q l1 )[0,1], MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYgacaaMc8Uaeyypa0JaaGjbVlaaic dacaGGSaGaeyOjGWRaaiilaiabgUcaRiabg6HiLkaacYcacaa5GcGa aGjbVlaadcfacaWGYbGaam4BaiaadQgacaGGOaGaamOCa8aadaWgaa WcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiil aiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTi aaigdaa8aabeaaaSqabaGccaaMb8+dbiaacMcacaaMc8UaeyyXICTa aGPaVlaadEgacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaS baaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWG XbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqaba GccaaMb8+dbiaacMcacaaMe8UaeyicI4SaaGjbVlaacUfacaaIWaGa aiilaiaaigdacaGGDbGaaiilaaaa@86EC@  

  g( r q 0 )=1, f 1 ( r q 0 )= λ 1 ( r q 0 ), λ l ( r q 0 ,, q l1 )[1,+[. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaaaleqaaOGaaGza V=qacaGGPaGaaGPaVlabg2da9iaaykW7caaIXaGaaiilaiaaysW7ca WGMbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacIcacaWGYbWd amaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaaaS qabaGcpeGaaiykaiaaykW7cqGH9aqpcaaMc8Uaeq4UdW2damaaBaaa leaapeGaaGymaaWdaeqaaOGaaiika8qacaWGYbWdamaaBaaaleaape GaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqabaGccaGGPaGa aiilaiaaysW7peGaeq4UdW2damaaBaaaleaapeGaamiBaaWdaeqaaO WdbiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWd biaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaS baaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7 peGaaiykaiaaysW7cqGHiiIZcaaMe8Uaai4waiabgkHiTiaaigdaca GGSaGaey4kaSIaeyOhIuQaai4waiaac6caaaa@89BC@

Рассмотрим проектор Proj( r q 0 ,, q l1 ). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaam4BaiaadQgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGcpeGaaiykaiaac6ca aaa@5A80@  Если λ l ( r q 0 ,, q l1 )1, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc caaMb8+dbiaacMcacaaMe8UaeyOKH4QaaGjbVlabgkHiTiaaykW7ca aIXaGaaiilaaaa@63AC@  то мы имеем меру правдоподобия (возможности) и в этом случае g( r q 0 ,, q l )1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbe aak8qacaGGPaGaaGPaVlabgkziUkaaykW7caaIXaGaaiOlaaaa@5BD3@  При этом должно выполняться условие Proj( r q 0 ,, q l1 )g( r q 0 ,, q l1 )g( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaam4BaiaadQgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGccaaMb8+dbiaacMca caaMe8UaeyyXICTaaGPaVlaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaig daa8aabeaaaSqabaGccaaMb8+dbiaacMcacaaMe8UaeyyzImRaaGjb VlaadEgacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaW qaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWd amaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGcca aMb8+dbiaacMcaaaa@8202@  и, следовательно, Proj( r q 0 ,, q l1 )1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaam4BaiaadQgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGcpeGaaiykaiaaykW7 cqGHLjYScaaMc8UaaGymaaaa@5F65@ . Аналогично, если λ l ( r q 0 ,, q l1 )+, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc caaMb8+dbiaacMcacaaMc8UaeyOKH4QaaGPaVlabgUcaRiaaykW7cq GHEisPcaGGSaaaaa@6453@  то мы имеем меру доверия (необходимости) и g( r q 0 ,, q l )0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbe aak8qacaGGPaGaaGPaVlabgkziUkaaykW7caaIWaGaaiOlaaaa@5BD2@  В этом случае Proj( r q 0 ,, q l1 )[0,1]. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaam4BaiaadQgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGccaaMb8+dbiaacMca caaMe8UaeyicI4SaaGjbVlaacUfacaaIWaGaaiilaiaaigdacaGGDb GaaGPaVlaac6caaaa@6618@  Таким образом, проектор Proj( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaam4BaiaadQgacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaa paqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaape GaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGccaaMb8+dbiaacMca aaa@5B58@  является функцией, зависящей от g( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaig daa8aabeaaaSqabaGccaaMb8+dbiaacMcaaaa@5895@  и λ l ( r q 0 ,, q l1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaakiaacIcapeGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc caaMb8UaaiykaiaacYcaaaa@5B61@  для которой выполняются вышеописанные условия. Вариантом функции проектора может быть функция:

  Proj( r q 0 ,, q l1 )=g ( r q 0 ,, q l1 ) λ l ( r q 0 ,, q l1 ) . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadcfacaWGYbGaam4BaiaadQgapaGaai ika8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaa icdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaW qaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7caGG PaWdbiabg2da9iaadEgapaGaaiika8qacaWGYbWdamaaBaaaleaape GaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOj GWRaaiilaiaadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaGymaa WdaeqaaaWcbeaakiaaygW7caGGPaWaaWbaaSqabeaapeGaeq4UdW2d amaaBaaameaapeGaamiBaaWdaeqaaSWdbiaacIcacaWGYbWdamaaBa aameaapeGaamyCa8aadaWgaaqaa8qacaaIWaaapaqabaWdbiaacYca cqGHMacVcaGGSaGaamyCa8aadaWgaaqaa8qacaWGSbGaeyOeI0IaaG ymaaWdaeqaaaqabaWcpeGaaiykaaaakiaac6caaaa@7A66@

Тогда функция f l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGa aGzaV=qacaGGPaaaaa@59F9@  примет вид:

  f l ( r q 0 ,, q l1 )= λ l ( r q 0 ,, q l1 )g ( r q 0 ,, q l1 ) 1+ λ l ( r q 0 ,, q l1 ) . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOWd biaacMcacaaMe8Uaeyypa0JaaGjbVlabeU7aS9aadaWgaaWcbaWdbi aadYgaa8aabeaakiaacIcapeGaamOCa8aadaWgaaWcbaWdbiaadgha paWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacY cacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaa aSqabaGccaaMb8UaaiykaiaaykW7peGaeyyXICTaaGPaVlaadEgapa Gaaiika8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWd biaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaS baaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7 caGGPaWaaWbaaSqabeaapeGaaGymaiabgUcaRiabeU7aS9aadaWgaa adbaWdbiaadYgaa8aabeaaliaacIcapeGaamOCa8aadaWgaaadbaWd biaadghapaWaaSbaaeaapeGaaGimaaWdaeqaa8qacaGGSaGaeyOjGW RaaiilaiaadghapaWaaSbaaeaapeGaamiBaiabgkHiTiaaigdaa8aa beaaaeqaaSGaaiykaaaak8qacaGGUaaaaa@91D6@

Определим зависимости для расчета неоднородной нечеткой меры на р-адических шарах для подмножества AI, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eacaaMb8Uaaiilaaaa@534A@  которое является образом множества р-адических шаров U(A)={ U ε i ( r i )|i= 1, N A ¯ } MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfacaGGOaGaamyqaiaacMcacaaMe8 Uaeyypa0JaaGjbV=aacaGG7bWdbiaadwfapaWaaSbaaSqaa8qacqaH 1oqzpaWaaSbaaWqaa8qacaWGPbaapaqabaaaleqaaOWdbiaacIcaca WGYbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacMcacaaMc8Ua aiiFaiaaykW7caWGPbGaaGjbVlabg2da9iaaysW7paWaa0aaaeaape GaaGymaiaacYcacaWGobWdamaaBaaaleaapeGaamyqaaWdaeqaaaaa kiaac2haaaa@6841@  [10]. Пусть CS( U ε i ( r i )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGtbWdaiaacIcapeGaamyva8 aadaWgaaWcbaWdbiabew7aL9aadaWgaaadbaWdbiaadMgaa8aabeaa aSqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGPbaapaqaba GcpeGaaiyka8aacaGGPaaaaa@5574@  — множество всех р-адических покрытий Co v α ( U ε i ( r i )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGVbGaamODa8aadaWgaaWcba Wdbiabeg7aHbWdaeqaaOGaaiika8qacaWGvbWdamaaBaaaleaapeGa eqyTdu2damaaBaaameaapeGaamyAaaWdaeqaaaWcbeaak8qacaGGOa GaamOCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaWdaiaa cMcaaaa@587F@  для шара U ε i ( r i ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacqaH1oqzpa WaaSbaaWqaa8qacaWGPbaapaqabaaaleqaaOWdbiaacIcacaWGYbWd amaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacMcaaaa@524D@ . Тогда множество всех покрытий, соответствующих U(A), будет задавать для множества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  р-адический ландшафт LS(U(A))={CS( U ε i ( r i ))| U ε i ( r i )U(A)}. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadYeacaWGtbGaaiikaiaadwfacaGGOa GaamyqaiaacMcacaGGPaGaaGjbVlabg2da9iaaysW7caGG7bGaam4q aiaadofacaGGOaGaamyva8aadaWgaaWcbaWdbiabew7aL9aadaWgaa adbaWdbiaadMgaa8aabeaaaSqabaGcpeGaaiikaiaadkhapaWaaSba aSqaa8qacaWGPbaapaqabaGccaaMb8+dbiaacMcacaGGPaGaaeiFai aadwfapaWaaSbaaSqaa8qacqaH1oqzpaWaaSbaaWqaa8qacaWGPbaa paqabaaaleqaaOWdbiaacIcacaWGYbWdamaaBaaaleaapeGaamyAaa WdaeqaaOGaaGzaV=qacaGGPaGaeyicI4SaamyvaiaacIcacaWGbbGa aiykaiaac2hacaGGUaaaaa@728F@  Исходя из этого, для определения меры подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  на практике целесообразно знать меры всех покрытий из LS(U(A)). Мера для покрытия U1(1), соответствующего всему множеству I, будет определять нечеткую меру подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  в классическом понимании. Следует отметить, что в общем случае мера “полного” шара U p 1l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiaildc hapaWaiailCaaameqcaYsaiailpeGaiailigdacWaGSyOeI0Iaiail dYgaaaaal8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadg hapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaa cYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabe aaaSqabaGcpeGaaiykaaaa@618F@  и мера покрытия в виде данного шара Co v p 1l ( U p l ( r q 0 , q l ))= U p 1l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGVbGaamODa8aadaWgaaWcba WdbiacaIZGWbWdamacaIdhaaadbKaG4eacaIZdbiacaIdIXaGamaio gkHiTiacaIZGSbaaaaWcpaqabaGcpeGaaiikaiaaygW7cGaVaoyva8 aadGaGeTbaaSqaiairpeGaiairdchapaWaiairCaaameqcasuaiair peGamairgkHiTiacas0GSbaaaaWcpaqajairaOWdbiaacIcacaWGYb WdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaa l8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgaa8aabe aaaSqabaGccaaMb8+dbiaacMcacaGGPaGaeyypa0Jaamyva8aadGao aUbaaSqaiGdGpeGaiGdrdchapaWaiGdrCaaameqc4quaiGdrpeGaiG drigdacWaoezOeI0IaiGdrdYgaaaaal8aabKaoacGcpeGaiGdGcIca cGaoaoOCa8aadGaoaUbaaSqaiGdGpeGaiGdGdghapaWaiGdGBaaame ac4a4dbiac4aiIWaaapaqajGdGaSWdbiac4aOGSaGamGdGgAci8kac 4aOGSaGaiGdGdghapaWaiGdGBaaameac4a4dbiac4a4GSbGamGdGgk HiTiac4aiIXaaapaqajGdGaaWcbKaoacGccaaMb8+dbiac4aOGPaaa aa@9A8C@  не совпадают. Обозначим меру покрытия для шаров U p l ( r q 0 , q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiaiudc hapaWaiaiuCaaameqcacvaiaiupeGamaiugkHiTiacac1GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaWGXbWdamaa BaaameaapeGaamiBaaWdaeqaaaWcbeaakiaaygW7peGaaiykaaaa@602A@  в виде g(Cov( r q 0 , q l1 )). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqa a8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaW qaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGGPaWd aiaacMcacaGGUaaaaa@5B4B@  В общем случае выполняется условие g( r q 0 ,, q l1 )g(Cov( r q 0 , q l1 )). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaig daa8aabeaaaSqabaGcpeGaaiykaiaaysW7cqGHLjYScaaMe8Uaam4z a8aacaGGOaWdbiaadoeacaWGVbGaamODaiaacIcacaWGYbWdamaaBa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGG SaGaeyOjGWRaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOGaaGzaV=qacaGGPaWdaiaacMcacaGGUaaaaa@6E5F@  Тогда справедливо следующее утверждение.

Утверждение 4. Значение неравномерной нечеткой меры на р-адических шарах покрытия Co v p 1l ( U p l ( r q 0 , q l ))LS(U(A)) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiac4d4GdbGaiGpGd+gacGa+aoODa8aadG aYaUbaaSqaiGmGpeGaiGmrdchapaWaiGmrCaaameqcituaiGmrpeGa iGmrigdacWaYezOeI0IaiGmrdYgaaaaal8aabKaYacGccGaVakika8 qacGaVaoyva8aadGaGeTbaaSqaiairpeGaiairdchapaWaiairCaaa meqcasuaiairpeGamairgkHiTiacas0GSbaaaaWcpaqajairaOWdbi aacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaa icdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaadbaWdbi aadYgaa8aabeaaaSqabaGccaaMb8+dbiaacMcapaGaaiyka8qacqGH iiIZcaWGmbGaam4uaiaacIcacaWGvbGaaiikaiaadgeacaGGPaGaai ykaaaa@8382@  определяется соотношениями:

 g(Cov(rq0,ql1))=1λl(rq0,,ql1)××Fl(rq0,,ql1)(1+fl(rq0,,ql1))al(rq0,ql1)p1;fl(rq0,,ql1)=λl(rq0,,ql1)g(rq0,,ql1)1+λl(rq0,,ql1);Fl(rq0,,ql1)=qlAl(rq0,,ql1)(1+g(Cov(rq0,ql))××λl(rq0,,ql1)),

где r q 0 ,, q l1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGa amyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaale qaaaaa@54AC@  — р-адическое число, соответствующее центру шара покрытия, A l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGa aGzaV=qacaGGPaaaaa@59D4@  — множество индексов ql р-адических чисел r q 0 ,, q l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGXbWdam aaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGa amyCa8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaaaaa@5304@  для центров шаров равных по покрытию U p 1l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacud4GvbWdamaaBaaaleaapeGaiaildc hapaWaiailCaaameqcaYsaiailpeGaiGjuigdacWaMqzOeI0IaiGju dYgaaaaal8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadg hapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaa cYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabe aaaSqabaGcpeGaaiykaaaa@624F@  и ­входящих в U(A), Card( A l ( r q 0 ,, q l1 ))= a l ( r q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGHbGaamOCaiaadsgapaGaai ika8qacaWGbbWdamaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaacIca caWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8 aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqaa8qa caWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7peGaaiyka8 aacaGGPaGaaGjbV=qacqGH9aqpcaaMe8Uaamyya8aadaWgaaWcbaWd biaadYgaa8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadg hapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaa dghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbe aak8qacaGGPaGaaGjbVlabgIGiodaa@7383@   0,, p1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabgIGiolaaysW7daGadaWdaeaapeGaaG imaiaacYcacqGHMacVcaGGSaGaaqoOaiaadchacaaMe8UaeyOeI0Ia aGjbVlaaigdaaiaawUhacaGL9baaaaa@5AA7@ , g( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaig daa8aabeaaaSqabaGccaaMb8+dbiaacMcaaaa@5895@  — мера р-адического шара U p 1l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacud4GvbWdamaaBaaaleaapeGaiaildc hapaWaiailCaaameqcaYsaiailpeGaiGjuigdacWaMqzOeI0IaiGju dYgaaaaal8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadg hapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaa cYcacaWGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabe aaaSqabaGcpeGaaiykaaaa@624F@ , рассчитанная для последовательности λ l ( r q 0 ,, q l1 ). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaakiaacIcapeGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc caaMb8UaaiykaiaaykW7caGGUaaaaa@5CEF@

Доказательство. Мера покрытия Co v p 1l ( U p l ( r q 0 , q l )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGVbGaamODa8aadaWgaaWcba WdbiacaIZGWbWdamacyIghaaadbKaMOfacyI2dbiacyIgIXaGamGjA gkHiTiacyI2GSbaaaaWcpaqabaGcpeGaaiikaiacid4GvbWdamaaBa aaleaapeGaiairdchapaWaiairCaaameqcasuaiairpeGamGjAgkHi TiacyI2GSbaaaaWcpaqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8 qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGH MacVcaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbeaak8qaca GGPaGaaiykaaaa@6E2A@  на уровне l1 определяется по формуле:

  g(Cov( r q 0 , q l1 ))= 1 λ l ( r q 0 ,, q l1 ) × × q l 0,, p1 1+g(Cov( r q 0 , q l )) λ l ( r q 0 , q l1 ) 1 . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaam4za8aacaGGOaWdbiaadoeaca WGVbGaamODaiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWg aaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aada WgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGaaGza V=qacaGGPaWdaiaacMcapeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8 aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8aabeaak8qacaGG OaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWa aapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaa peGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGcpeGaaiykaaaacq GHxdaTaeaacWaGacaaecGHxdaTcaaMe8+aaiWab8aabaWdbmaawafa beWcpaqaa8qacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaSWdbi abgIGiopaacmaapaqaa8qacaaIWaGaaiilaiabgAci8kaacYcacaa5 GcGaamiCaiabgkHiTiaaigdaaiaawUhacaGL9baaaeqan8aabaWdbi abg+Givdaakmaabmaapaqaa8qacaaIXaGaaGjbVlabgUcaRiaaykW7 caWGNbWdaiaacIcapeGaam4qaiaad+gacaWG2bGaaiikaiaadkhapa WaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWd biaacYcacqGHMacVcaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaa Wcbeaak8qacaGGPaWdaiaacMcapeGaaGjbVlabeU7aS9aadaWgaaWc baWdbiaadYgaa8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbi aadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci 8kaadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaa WcbeaakiaaygW7peGaaiykaaGaayjkaiaawMcaaiaaysW7cqGHsisl caaMe8UaaGymaaGaay5Eaiaaw2haaiacaYUGUaaaaaa@B439@

Все множество индексов ql на уровне l делится на два подмножества A l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGa aGzaV=qacaGGPaaaaa@59D4@ , для р-адических шаров U p l ( r q 0 ,, q l )U(A), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiaiodc hapaWaiGjxCaaameqcyYvaiGjxpeGamGjxgkHiTiacyY1GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGccaaMb8+dbiaacM cacaaMe8UaeyicI4SaaGjbVlaadwfacaGGOaGaamyqaiaacMcacaGG Saaaaa@69BD@  и {0,, p1}\ A l ( r q 0 ,, q l1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaacUhacaaIWaGaaiilaiabgAci8kaacY cacaa5GcGaamiCaiabgkHiTiaaigdacaGG9bGaaGjcVJqbaiab=Xfa bkaayIW7caWGbbWdamaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaacI cacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicda a8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqaa8 qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7peGaaiyk aiaacYcaaaa@68DF@  для U p l ( r q 0 ,, q l )U(A). MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiacid4GvbWdamaaBaaaleaapeGaiaiodc hapaWaiGjxCaaameqcyYvaiGjxpeGamGjxgkHiTiacyY1GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaiabgM GiplaadwfacaGGOaGaamyqaiaacMcacaaMc8UaaiOlaaaa@66A8@  Тогда на уровне l для q l A l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaWGSbaapa qabaGccaaMe8+dbiabgIGiolaaysW7caWGbbWdamaaBaaaleaapeGa amiBaaWdaeqaaOWdbiaacIcacaWGYbWdamaaBaaaleaapeGaamyCa8 aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiil aiaadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaa Wcbeaak8qacaGGPaaaaa@5F43@  мера g(Cov( r q 0 , q l )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqa a8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaW qaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcapaGaaiykaaaa@58F1@  будет определяться соотношением:

 g(Cov(rq0,ql))=g(rq0,,ql)=1λl(rq0,,ql1)××(1+fl(rq0,,ql1))1/p1;fl(rq0,,ql1)=λl(rq0,,ql1)g(rq0,,ql1)1+λl(rq0,,ql1).

Отсюда:

  q l A l ( r q 0 ,, q l1 ) 1+g(Cov( r q 0 , q l )) λ l ( r q 0 ,, q l1 ) = = 1+g(Cov( r q 0 , q l )) λ l ( r q 0 ,, q l1 ) a l ( r q 0 , q l1 ) = = 1+ 1 λ l ( r q 0 ,, q l1 ) (1+ f l ( r q 0 ,, q l1 )) 1 p 1 × × λ l ( r q 0 ,, q l1 ) a l ( r q 0 , q l1 ) = 1+ f l ( r q 0 ,, q l1 ) a l ( r q 0 , q l1 ) p . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeWaaybuaeqal8aabaWdbiaadghapa WaaSbaaWqaa8qacaWGSbaapaqabaWcpeGaeyicI4Saamyqa8aadaWg aaadbaWdbiaadYgaa8aabeaal8qacaGGOaGaamOCa8aadaWgaaadba WdbiaadghapaWaaSbaaeaapeGaaGimaaWdaeqaa8qacaGGSaGaeyOj GWRaaiilaiaadghapaWaaSbaaeaapeGaamiBaiabgkHiTiaaigdaa8 aabeaaaeqaaSWdbiaacMcaaeqan8aabaWdbiabg+Givdaakmaabmaa paqaa8qacaaIXaGaey4kaSIaam4zaiaacIcacaWGdbGaam4BaiaadA hapaGaaiika8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaad baWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaa adbaWdbiaadYgaa8aabeaaaSqabaGccaaMb8Uaaiyka8qacaGGPaGa eyyXICTaeq4UdW2damaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaacI cacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicda a8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqaa8 qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7peGaaiyk aaGaayjkaiaawMcaaiaaysW7cqGH9aqpaeaacqGH9aqpdaqadaWdae aapeGaaGymaiabgUcaRiaadEgapaGaaiika8qacaWGdbGaam4Baiaa dAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8 qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaWqa a8qacaWGSbaapaqabaaaleqaaOGaaGzaV=qacaGGPaWdaiaacMcape GaeyyXICTaeq4UdW2damaaBaaaleaapeGaamiBaaWdaeqaaOGaaiik a8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaic daa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqa a8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7caGGPa aapeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGHbWdamaaBaaa meaapeGaamiBaaWdaeqaaSGaaiika8qacaWGYbWdamaaBaaameaape GaamyCa8aadaWgaaqaa8qacaaIWaaapaqabaWdbiaacYcacqGHMacV caWGXbWdamaaBaaabaWdbiaadYgacqGHsislcaaIXaaapaqabaaabe aaliaacMcaaaGccaaMc8+dbiabg2da9aqaaiabg2da9maaceGabaGa aGymaiabgUcaRmaadmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaeq4UdW2damaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaacIca caWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8 aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqaa8qa caWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGGPaaaaiabgw SixpaacmaapaqaaiaacIcapeGaaGymaiabgUcaRiaadAgapaWaaSba aSqaa8qacaWGSbaapaqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8 qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGH MacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOWdbiaacMcapaGaaiykamaaCaaaleqabaWdbmaa laaapaqaa8qacaaIXaaapaqaa8qacaWGWbaaaaaakiabgkHiTiaaig daaiaawUhacaGL9baaaiaawUfacaGLDbaaaiaawUhaaiabgEna0cqa amaaciGabaqbaeqabmqaaaqaaaqaaaqaaaaacqGHxdaTcqaH7oaBpa WaaSbaaSqaa8qacaWGSbaapaqabaGccaGGOaWdbiaadkhapaWaaSba aSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacY cacqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGHsisl caaIXaaapaqabaaaleqaaOGaaGzaVlaacMcaa8qacaGL9baapaWaaW baaSqabeaapeGaamyya8aadaWgaaadbaWdbiaadYgaa8aabeaaliaa cIcapeGaamOCa8aadaWgaaadbaWdbiaadghapaWaaSbaaeaapeGaaG imaaWdaeqaa8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaqaa8qacaWG SbGaeyOeI0IaaGymaaWdaeqaaaqabaWccaaMb8Uaaiykaaaakiaayg W7peGaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHRaWkcaWGMbWdamaa BaaaleaapeGaamiBaaWdaeqaaOGaaiika8qacaWGYbWdamaaBaaale aapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGa eyOjGWRaaiilaiaadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaG ymaaWdaeqaaaWcbeaakiaacMcaa8qacaGLOaGaayzkaaWdamaaCaaa leqabaWdbmaalaaapaqaa8qacGaGCnyya8aadGaGCTbaaWqaiaixpe GaiaixdYgaa8aabKaGCbWcpeGaiaixcIcacGaGCnOCa8aadGaGCTba aWqaiaixpeGaiaixdghapaWaiaixBaaabGaGC9qacGaGCHimaaWdae qcaYfapeGaiaixcYcacWaGCzOjGWRaiaixdghapaWaiaixBaaabGaG C9qacGaGCniBaiadaYLHsislcGaGCHymaaWdaeqcaYfaaeqcaYfal8 qacGaGCjykaaWdaeaapeGaamiCaaaaaaGccaGGUaqbaeqabmqaaaqa aaqaaaqaaaaaaaaa@4BF5@

  q l A l ( r q 0 ,, q l1 ) 1+g(Cov( r q 0 , q l )) λ l ( r q 0 ,, q l1 ) = = 1+g(Cov( r q 0 , q l )) λ l ( r q 0 ,, q l1 ) a l ( r q 0 , q l1 ) = = 1+ 1 λ l ( r q 0 ,, q l1 ) (1+ f l ( r q 0 ,, q l1 )) 1 p 1 × × λ l ( r q 0 ,, q l1 ) a l ( r q 0 , q l1 ) = 1+ f l ( r q 0 ,, q l1 ) a l ( r q 0 , q l1 ) p . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeWaaybuaeqal8aabaWdbiaadghapa WaaSbaaWqaa8qacaWGSbaapaqabaWcpeGaeyicI4Saamyqa8aadaWg aaadbaWdbiaadYgaa8aabeaal8qacaGGOaGaamOCa8aadaWgaaadba WdbiaadghapaWaaSbaaeaapeGaaGimaaWdaeqaa8qacaGGSaGaeyOj GWRaaiilaiaadghapaWaaSbaaeaapeGaamiBaiabgkHiTiaaigdaa8 aabeaaaeqaaSWdbiaacMcaaeqan8aabaWdbiabg+Givdaakmaabmaa paqaa8qacaaIXaGaey4kaSIaam4zaiaacIcacaWGdbGaam4BaiaadA hapaGaaiika8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaad baWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaamyCa8aadaWgaa adbaWdbiaadYgaa8aabeaaaSqabaGccaaMb8Uaaiyka8qacaGGPaGa eyyXICTaeq4UdW2damaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaacI cacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicda a8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqaa8 qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7peGaaiyk aaGaayjkaiaawMcaaiaaysW7cqGH9aqpaeaacqGH9aqpdaqadaWdae aapeGaaGymaiabgUcaRiaadEgapaGaaiika8qacaWGdbGaam4Baiaa dAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8 qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaWqa a8qacaWGSbaapaqabaaaleqaaOGaaGzaV=qacaGGPaWdaiaacMcape GaeyyXICTaeq4UdW2damaaBaaaleaapeGaamiBaaWdaeqaaOGaaiik a8qacaWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaic daa8aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqa a8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaakiaaygW7caGGPa aapeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGHbWdamaaBaaa meaapeGaamiBaaWdaeqaaSGaaiika8qacaWGYbWdamaaBaaameaape GaamyCa8aadaWgaaqaa8qacaaIWaaapaqabaWdbiaacYcacqGHMacV caWGXbWdamaaBaaabaWdbiaadYgacqGHsislcaaIXaaapaqabaaabe aaliaacMcaaaGccaaMc8+dbiabg2da9aqaaiabg2da9maaceGabaGa aGymaiabgUcaRmaadmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdae aapeGaeq4UdW2damaaBaaaleaapeGaamiBaaWdaeqaaOWdbiaacIca caWGYbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8 aabeaal8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaWqaa8qa caWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGGPaaaaiabgw SixpaacmaapaqaaiaacIcapeGaaGymaiabgUcaRiaadAgapaWaaSba aSqaa8qacaWGSbaapaqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8 qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGH MacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGHsislcaaIXa aapaqabaaaleqaaOWdbiaacMcapaGaaiykamaaCaaaleqabaWdbmaa laaapaqaa8qacaaIXaaapaqaa8qacaWGWbaaaaaakiabgkHiTiaaig daaiaawUhacaGL9baaaiaawUfacaGLDbaaaiaawUhaaiabgEna0cqa amaaciGabaqbaeqabmqaaaqaaaqaaaqaaaaacqGHxdaTcqaH7oaBpa WaaSbaaSqaa8qacaWGSbaapaqabaGccaGGOaWdbiaadkhapaWaaSba aSqaa8qacaWGXbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacY cacqGHMacVcaGGSaGaamyCa8aadaWgaaadbaWdbiaadYgacqGHsisl caaIXaaapaqabaaaleqaaOGaaGzaVlaacMcaa8qacaGL9baapaWaaW baaSqabeaapeGaamyya8aadaWgaaadbaWdbiaadYgaa8aabeaaliaa cIcapeGaamOCa8aadaWgaaadbaWdbiaadghapaWaaSbaaeaapeGaaG imaaWdaeqaa8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaqaa8qacaWG SbGaeyOeI0IaaGymaaWdaeqaaaqabaWccaaMb8Uaaiykaaaakiaayg W7peGaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHRaWkcaWGMbWdamaa BaaaleaapeGaamiBaaWdaeqaaOGaaiika8qacaWGYbWdamaaBaaale aapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGa eyOjGWRaaiilaiaadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaG ymaaWdaeqaaaWcbeaakiaacMcaa8qacaGLOaGaayzkaaWdamaaCaaa leqabaWdbmaalaaapaqaa8qacGaGCnyya8aadGaGCTbaaWqaiaixpe GaiaixdYgaa8aabKaGCbWcpeGaiaixcIcacGaGCnOCa8aadGaGCTba aWqaiaixpeGaiaixdghapaWaiaixBaaabGaGC9qacGaGCHimaaWdae qcaYfapeGaiaixcYcacWaGCzOjGWRaiaixdghapaWaiaixBaaabGaG C9qacGaGCniBaiadaYLHsislcGaGCHymaaWdaeqcaYfaaeqcaYfal8 qacGaGCjykaaWdaeaapeGaamiCaaaaaaGccaGGUaqbaeqabmqaaaqa aaqaaaqaaaaaaaaa@4BF5@

Для шаров U p l ( r q 0 ,, q l )U(A), q l A l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiac8c4GvbWdamaaBaaaleaapeGaiaiodc hapaWaiGjxCaaameqcyYvaiGjxpeGamGjxgkHiTiacyY1GSbaaaaWc paqabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBa aameaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyC a8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGcpeGaaiykaiaays W7cqGHjiYZcaaMe8UaamyvaiaacIcacaWGbbGaaiykaiaacYcacaaM e8UaamyCa8aadaWgaaWcbaWdbiaadYgaa8aabeaakiaaysW7peGaey ycI8SaaGjbVlaadgeapaWaaSbaaSqaa8qacaWGSbaapaqabaGcpeGa aiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaG imaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8aadaWgaaad baWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGaaGzaV=qaca GGPaaaaa@8024@  и g(Cov( r q 0 , q l ))g( r q 0 ,, q l ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqa a8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaW qaa8qacaWGSbaapaqabaaaleqaaOGaaGzaV=qacaGGPaWdaiaacMca caaMe8+dbiabgsMiJkaaysW7caWGNbWdaiaacIcapeGaamOCa8aada WgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGa aiilaiabgAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdae qaaaWcbeaakiaaygW7caGGPaGaaiOlaaaa@6CA6@  Для них определим вспомогательную функцию в виде:

  F l ( r q 0 ,, q l1 )= = q l A l ( r q 0 ,, q l1 ) 1+g(Cov( r q 0 , q l )) λ l ( r q 0 ,, q l1 ) . MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaamOra8aadaWgaaWcbaWdbiaadY gaa8aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWa aSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcaca WGXbWdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqa baGccaaMb8+dbiaacMcacqGH9aqpaeaacqGH9aqpcaaMb8+aaybuae qal8aabaWdbiaadghapaWaaSbaaWqaa8qacaWGSbaapaqabaWcpeGa eyycI8Saamyqa8aadaWgaaadbaWdbiaadYgaa8aabeaaliaacIcape GaamOCa8aadaWgaaadbaWdbiaadghapaWaaSbaaeaapeGaaGimaaWd aeqaa8qacaGGSaGaeyOjGWRaaiilaiaadghapaWaaSbaaeaapeGaam iBaiabgkHiTiaaigdaa8aabeaaaeqaaSGaaiykaaWdbeqan8aabaWd biabg+Givdaakmaabmaapaqaa8qacaaIXaGaey4kaSIaam4zaiaacI cacaWGdbGaam4BaiaadAhapaGaaiika8qacaWGYbWdamaaBaaaleaa peGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaey OjGWRaamyCa8aadaWgaaadbaWdbiaadYgaa8aabeaaaSqabaGccaaM b8Uaaiyka8qacaGGPaGaeyyXICTaeq4UdW2damaaBaaaleaapeGaam iBaaWdaeqaaOGaaiika8qacaWGYbWdamaaBaaaleaapeGaamyCa8aa daWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGWRaaiilai aadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWc beaakiaaygW7caGGPaaapeGaayjkaiaawMcaaiaac6caaaaa@9827@

Подставив соответствующие выражения для g(Cov( r q 0 , q l )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqa a8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaW qaa8qacaWGSbaapaqabaaaleqaaOWdbiaacMcapaGaaiykaaaa@58F1@  и F l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGa aGzaV=qacaGGPaaaaa@59D9@  для определения меры g(Cov( r q 0 , q l1 )), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqa a8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaW qaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGGPaWd aiaacMcapeGaaiilaaaa@5B59@ мы получим соотношение, заданное Утверждением 3. 

Интересно заметить, что функции fl(·) и Fl(·) выполняют роли уточняющей и агрегирующей функций соответственно. Уточняющая функция позволяет по заданным параметрам λ определить меры соответствующих р-адических шаров, а агрегирующая функция обеспечивает получение значения меры любого покрытия, входящего в р-адический ландшафт LS(U(A)) для множества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@ . Исходя из этого, практический алгоритм расчета неравномерной меры на р-адических шарах для данного подмножества имеет следующий вид.

Алгоритм.

Шаг 1. Определение исходных данных. Для задания меры на р-адических шарах мы должны иметь полную функцию λ l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiacaI2GXbWdamac aI2gaaadbGaGO9qacGaGOHimaaWdaeqcaIgal8qacGaGOjilaiadaI MHMacVcGaGOjilaiacaI2GXbWdamacaI2gaaadbGaGO9qacGaGOniB aiadaIMHsislcGaGOHymaaWdaeqcaIgaaSqabaGccaaMb8+dbiaacM caaaa@68D2@  для всех р-адических шаров на множестве I. Подмножество AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  рассматривается как образ множества р-адических шаров U(A) в соответствии с подходом, представленным в работе [10].

Шаг 2. Определение меры р-адических шаров. Меры g( r q 0 ,, q l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaadghapaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaaiilaiab gAci8kaacYcacaWGXbWdamaaBaaameaapeGaamiBaaWdaeqaaaWcbe aakiaaygW7peGaaiykaaaa@56ED@  рассчитываются на основании функции неравномерной меры на р-адических шарах Утверждения 3. Для этого определяются функции f l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGa aGzaV=qacaGGPaaaaa@59F9@ .

Шаг 3. Нахождение начального условия функции агрегирования. Определяем максимальный уровень l, на котором определены р-адические шары минимального радиуса из множества U(A) и определяем F l ( r q 0 ,, q l1 )=1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOGa aGzaV=qacaGGPaGaaGjbVlabg2da9iaaysW7caaIXaaaaa@5EB4@ .

Шаг 4. Расчет меры подмножества. Рассчитываем в соответствии с формулой Утверждения 4 меры покрытий g(Cov( r q 0 , q l1 )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqa a8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaadghapaWaaSbaaW qaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGGPaWd aiaacMcaaaa@5A99@ . Принимаем g(Cov( r q 0 ))= MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqa a8qacaaIWaaapaqabaaaleqaaOGaaGzaV=qacaGGPaWdaiaacMcaca aMe8+dbiabg2da9aaa@5883@  = g(A).

Пример 2. Рассмотрим расчет неравномерной нечеткой меры на р-адических шарах для подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  из Примера 1. Для расчета меры подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@  нам необходимо рассчитать меры покрытий Co v 1 ( U p 1 ( r 0, q 1 )), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGVbGaamODa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacaGGOaGaiqkGdwfapaWaiWfGBaaaleac Cb4dbiacCr0GWbWdamacCrehaaadbKaxefacCr0dbiad0XLHsislcG aDCHymaaaaaSWdaeqcCbiak8qacGaxakikaiacCb4GYbWdamacCb4g aaWcbGaxa+qacGaxaIimaiacCbOGSaGaiWfGdghapaWaiWfGBaaame acCb4dbiacCbiIXaaapaqajWfGaaWcbKaxacGccGaxaIzaV=qacGax akykaiaacMcacaGGSaaaaa@70F3@   Co v p 1 ( U p 2 ( r 0,0, q 2 )), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGVbGaamODa8aadaWgaaWcba Wdbiacac1GWbWdamacyshhaaadbKaM0facys3dbiadysNHsislcGaM 0HymaaaaaSWdaeqaaOWdbiaacIcacGaPaoyva8aadGaxaUbaaSqaiW fGpeGaiWfrdchapaWaiqhDCaaameqc0rxaiqhDpeGamqhDgkHiTiac 0rhIYaaaaaWcpaqajWfGaOWdbiacCbOGOaGaiWfGdkhapaWaiWfGBa aaleacCb4dbiacCbiIWaGaiWfGcYcacGaxaIimaiacCbOGSaGaiWfG dghapaWaiWfGBaaameacCb4dbiacCbiIYaaapaqajWfGaaWcbKaxac GcpeGaiWfGcMcacaGGPaGaaiilaaaa@7B37@   Co v p 1 ( U p 2 ( r 0,2, q 2 )). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGVbGaamODa8aadaWgaaWcba Wdbiacac1GWbWdamacyshhaaadbKaM0facys3dbiadysNHsislcGaM 0HymaaaaaSWdaeqaaOGaaiika8qacGaPaoyva8aadGaxaUbaaSqaiW fGpeGaiWfudchapaWaiqhACaaameqc0HwaiqhApeGamqhAgkHiTiac 0HgIYaaaaaWcpaqajWfGaOWdbiacCbOGOaGaiWfGdkhapaWaiWfGBa aaleacCb4dbiacCbiIWaGaiWfGcYcacGaxaIOmaiacCbOGSaGaiWfG dghapaWaiWfGBaaameacCb4dbiacCbiIYaaapaqajWfGaaWcbKaxac GccGaxaIzaV=qacGaxakyka8aacaGGPaGaaiOlaaaa@7D87@  При этом g(Cov( r 0 )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaam4qaiaad+gacaWG2b GaaiikaiaadkhapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiyk aiaacMcaaaa@52DB@  для покрытия Co v 1 ( U p 1 ( r 0, q 1 )) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadoeacaWGVbGaamODa8aadaWgaaWcba Wdbiaaigdaa8aabeaakiaacIcapeGaiGjGdwfapaWaiafGBaaaleac qb4dbiacqr0GWbWdamacOXfhaaadbKaACfacOX1dbiadOXLHsislcG aACHymaaaaaSWdaeqcqbiak8qacGauakikaiacqb4GYbWdamacqb4g aaWcbGaua+qacGauaIimaiacqbOGSaGaiafGdghapaWaiafGBaaame acqb4dbiacqbiIXaaapaqajafGaaWcbKauacGcpeGaiafGcMcapaGa aiykaaaa@6D60@  будет определять меру g A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgadaqadaWdaeaapeGaamyqaaGaay jkaiaawMcaaaaa@4DBB@  подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacaaMe8UaeyOHI0SaaGjbVlaadM eaaaa@5110@ . Пусть мера на р-адических шарах задана функцией λ l ( r q 0 ,, q l1 ), MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc caaMb8+dbiaacMcacaGGSaaaaa@5B72@  зависящей от р-адической координаты. Пусть значения данной функции для р-адических координат, необходимых нам для расчета покрытий, будут иметь значения λ 1 ( r 0 )=0.7,  λ 2 ( r 0,0 )=0.8,  λ 2 ( r 0,2 )=1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaaigdaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaa k8qacaGGPaGaaGjbVlabg2da9iaaysW7caaIWaGaaiOlaiaaiEdaca GGSaGaaqoOaiaaysW7cqaH7oaBpaWaaSbaaSqaa8qacaaIYaaapaqa baGccaGGOaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaiilaiaaic daa8aabeaakiaacMcacaaMe8+dbiabg2da9iaaysW7cqGHsislcaaM i8UaaGimaiaac6cacaaI4aGaaiilaiaaysW7caa5GcGaeq4UdW2dam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacIcacaWGYbWdamaaBaaa leaapeGaaGimaiaacYcacaaIYaaapaqabaGcpeGaaiykaiaaysW7cq GH9aqpcaaMc8UaaGymaiaac6caaaa@7C86@  Тогда значения уточняющей функции f l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOWd biaacMcaaaa@586F@  для необходимых покрытий в соответствии с Утверждением 4 будут иметь значения: f 2 ( r 0,0 )=0.6186,  f 2 ( r 0,2 )=0.0764, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaaIYaaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaaIWaGaaiilaiaa icdaa8aabeaak8qacaGGPaGaaGjbVlabg2da9iaaysW7cqGHsislca aMi8UaaGimaiaac6cacaaI2aGaaGymaiaaiIdacaaI2aGaaiilaiaa ysW7caa5GcGaamOza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qaca GGOaGaamOCa8aadaWgaaWcbaWdbiaaicdacaGGSaGaaGOmaaWdaeqa aOWdbiaacMcacaaMe8Uaeyypa0JaaGjbVlaaicdacaGGUaGaaGimai aaiEdacaaI2aGaaGinaiaacYcaaaa@7068@ f 1 ( r 0 )=0.7. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaaiykaiaaysW7cqGH9aqpcaaMe8UaaGimaiaac6cacaaI3aGaai Olaaaa@56F8@  Соответственно меры шаров с заданными р-адическими координатами: g( r 0,0,1 )= MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamOCa8aadaWgaaWcba WdbiaaicdacaGGSaGaaGimaiaacYcacaaIXaaapaqabaGcpeGaaiyk aiaaysW7cqGH9aqpaaa@5433@ =g( r 0,0,2 )=0.3435, g( r 0,2,0 )=0.0248,g( r 0,1 )=0.2764. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabg2da9iaaysW7caWGNbGaaiikaiaadk hapaWaaSbaaSqaa8qacaaIWaGaaiilaiaaicdacaGGSaGaaGOmaaWd aeqaaOWdbiaacMcacaaMe8Uaeyypa0JaaGjbVlaaicdacaGGUaGaaG 4maiaaisdacaaIZaGaaGynaiaacYcacaaMe8UaaqoOaiaadEgacaGG OaGaamOCa8aadaWgaaWcbaWdbiaaicdacaGGSaGaaGOmaiaacYcaca aIWaaapaqabaGcpeGaaiykaiaaysW7cqGH9aqpcaaMe8UaaGimaiaa c6cacaaIWaGaaGOmaiaaisdacaaI4aGaaiilaiaaysW7caWGNbGaai ikaiaadkhapaWaaSbaaSqaa8qacaaIWaGaaiilaiaaigdaa8aabeaa k8qacaGGPaGaaGjbVlabg2da9iaaysW7caaIWaGaaiOlaiaaikdaca aI3aGaaGOnaiaaisdacaGGUaaaaa@8187@

Для расчета меры покрытий в соответствии с Утверждением 4 рассчитываем агрегирующую функцию F l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGSbaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaWGXbWdamaaBaaa meaapeGaaGimaaWdaeqaaSWdbiaacYcacqGHMacVcaGGSaGaamyCa8 aadaWgaaadbaWdbiaadYgacqGHsislcaaIXaaapaqabaaaleqaaOWd biaacMcaaaa@584F@ . Для необходимых покрытий данная функция примет значения F 2 ( r 0,0 )= F 2 ( r 0,2 )= MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaaIYaaapa qabaGcpeGaaiikaiaadkhapaWaaSbaaSqaa8qacaaIWaGaaiilaiaa icdaa8aabeaak8qacaGGPaGaaGPaVlabg2da9iaaykW7caWGgbWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacIcacaWGYbWdamaaBaaa leaapeGaaGimaiaacYcacaaIYaaapaqabaGcpeGaaiykaiaaykW7cq GH9aqpaaa@5ED6@ =1,  F 1 ( r 0 )=1.4394. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabg2da9iaaykW7caaIXaGaaiilaiaaKd kacaaMe8UaamOra8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG OaGaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGPaGaaG jbVlabg2da9iaaykW7caaIXaGaaiOlaiaaisdacaaIZaGaaGyoaiaa isdacaGGUaaaaa@6021@  Тогда меры рассчитываемых ­покрытий будут: g(Cov( r 0,0 ))=0.5925, g(Cov( r 0,2 ))= MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgapaGaaiika8qacaWGdbGaam4Bai aadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaaicdacaGGSaGaaGim aaWdaeqaaOGaaGzaV=qacaGGPaWdaiaacMcacaaMe8+dbiabg2da9i aaysW7caaIWaGaaiOlaiaaiwdacaaI5aGaaGOmaiaaiwdacaGGSaGa aqoOaiaaysW7caWGNbWdaiaacIcapeGaam4qaiaad+gacaWG2bGaai ikaiaadkhapaWaaSbaaSqaa8qacaaIWaGaaiilaiaaikdaa8aabeaa kiaaygW7peGaaiyka8aacaGGPaGaaGjbV=qacqGH9aqpaaa@709A@ =0.0248, g(Cov( r 0 ))=0.802. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabg2da9iaaysW7caaIWaGaaiOlaiaaic dacaaIYaGaaGinaiaaiIdacaGGSaGaaqoOaiaadEgapaGaaiika8qa caWGdbGaam4BaiaadAhacaGGOaGaamOCa8aadaWgaaWcbaWdbiaaic daa8aabeaak8qacaGGPaWdaiaacMcacaaMe8+dbiabg2da9iaaysW7 caaIWaGaaiOlaiaaiIdacaaIWaGaaGOmaiaac6caaaa@64BA@  Та­ким образом, для заданной неоднородной меры на р-адических шарах мера подмножества AI MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadgeacqGHgksZcaWGjbaaaa@4DF6@  будет иметь значение g(A)= g(Cov( r 0 ))=0.802. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadEgacaGGOaGaamyqaiaacMcacaaMe8 Uaeyypa0JaaqoOaiaadEgapaGaaiika8qacaWGdbGaam4BaiaadAha caGGOaGaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGPa WdaiaacMcacaaMe8+dbiabg2da9iaaysW7caaIWaGaaiOlaiaaiIda caaIWaGaaGOmaiaac6caaaa@62B3@  Получение данного результата может быть представлено таблицей 1.

 

Таблица 1. Расчет неравномерной р-адической меры

l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E4@

U p l r q 0 ,... q l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGWbWaaWbaaWqabeaacqGHsislcaWGSbaaaaWcbeaakmaa bmaabaGaamOCamaaBaaaleaacaWGXbWaaSbaaWqaaiaaicdaaeqaaS Gaaiilaiaac6cacaGGUaGaaiOlaiaadghadaWgaaadbaGaamiBaaqa baaaleqaaaGccaGLOaGaayzkaaaaaa@4392@

λ l r q 0 ,... q l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaGaa83UdmaaBaaaleaacaWGSbaabeaakmaabmaabaGaamOCamaa BaaaleaacaWGXbWaaSbaaWqaaiaaicdaaeqaaSGaaiilaiaac6caca GGUaGaaiOlaiaadghadaWgaaadbaGaamiBaaqabaWcdaWgaaadbaGa eyOeI0IaaGymaaqabaaaleqaaaGccaGLOaGaayzkaaaaaa@465A@

f l r q 0 ,... q l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGSbaabeaakmaabmaabaGaamOCamaaBaaaleaacaWGXbWa aSbaaWqaaiaaicdaaeqaaSGaaiilaiaac6cacaGGUaGaaiOlaiaadg hadaWgaaadbaGaamiBaaqabaWcdaWgaaadbaGaeyOeI0IaaGymaaqa baaaleqaaaGccaGLOaGaayzkaaaaaa@4368@

g r q 0 ,... q l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaamOCamaaBaaaleaacaWGXbWaaSbaaWqaaiaaicdaaeqaaSGa aiilaiaac6cacaGGUaGaaiOlaiaadghadaWgaaadbaGaamiBaaqaba aaleqaaaGccaGLOaGaayzkaaaaaa@4062@

F l r q 0 ,... q l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGSbaabeaakmaabmaabaGaamOCamaaBaaaleaacaWGXbWa aSbaaWqaaiaaicdaaeqaaSGaaiilaiaac6cacaGGUaGaaiOlaiaadg hadaWgaaadbaGaamiBaaqabaWcdaWgaaadbaGaeyOeI0IaaGymaaqa baaaleqaaaGccaGLOaGaayzkaaaaaa@4348@

g Cov r q 0 ,... q l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaam4qaiaad+gacaWG2bWaaeWaaeaacaWGYbWaaSbaaSqaaiaa dghadaWgaaadbaGaaGimaaqabaWccaGGSaGaaiOlaiaac6cacaGGUa GaamyCamaaBaaameaacaWGSbaabeaaaSqabaaakiaawIcacaGLPaaa aiaawIcacaGLPaaaaaa@44A2@

1

U p 1 r 0,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGWbWaaWbaaWqabeaacqGHsislcaaIXaaaaaWcbeaakmaa bmaabaGaamOCamaaBaaaleaacaaIWaGaaiilaiaaigdaaeqaaaGcca GLOaGaayzkaaaaaa@3EB4@

0.7

0.7

0.2764

1.4394

0.802

2

U p 2 r 0,0,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGWbWaaWbaaWqabeaacqGHsislcaaIYaaaaaWcbeaakmaa bmaabaGaamOCamaaBaaaleaacaaIWaGaaiilaiaaicdacaGGSaGaaG ymaaqabaaakiaawIcacaGLPaaaaaa@401F@

-0.8

-0.6186

0.3435

1

0.5925

U p 2 r 0,0,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGWbWaaWbaaWqabeaacqGHsislcaaIYaaaaaWcbeaakmaa bmaabaGaamOCamaaBaaaleaacaaIWaGaaiilaiaaicdacaGGSaGaaG OmaaqabaaakiaawIcacaGLPaaaaaa@4020@

-0.8

-0.6186

0.3435

1

0.5925

U p 2 r 0,2,0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGWbWaaWbaaWqabeaacqGHsislcaaIYaaaaaWcbeaakmaa bmaabaGaamOCamaaBaaaleaacaaIWaGaaiilaiaaikdacaGGSaGaaG imaaqabaaakiaawIcacaGLPaaaaaa@4020@

1

0.0764

0.0248

1

0.0248

 

При изменении функции λ l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGOaGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc caaMb8+dbiaacMcaaaa@5AC2@  мера примет другое значение. Сама же функция параметра λ зависит от р-адической координаты покрывающего шара. Таким образом, мера на р-адических шарах может учитывать структуру множества I и формировать на нем пространство с нечеткой мерой, имеющей переменную модальность. При этом необходимость непосредственного задания функции плотности нечеткой меры отсутствует.

Одним из вариантов задания функции λ l ( r q 0 ,, q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadYgaa8 aabeaakiaacIcapeGaamOCa8aadaWgaaWcbaWdbiaadghapaWaaSba aWqaa8qacaaIWaaapaqabaWcpeGaaiilaiabgAci8kaacYcacaWGXb WdamaaBaaameaapeGaamiBaiabgkHiTiaaigdaa8aabeaaaSqabaGc caaMb8Uaaiykaaaa@5AB2@  может быть рассмотрена функция, определяемая р-адической координатой Se q l1 (r)=( q 0 , q l1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadofacaWGLbGaamyCa8aadaWgaaWcba WdbiaadYgacqGHsislcaaIXaaapaqabaGcpeGaaiikaiaadkhacaGG PaGaaGjbVlabg2da9iaaysW7caGGOaGaamyCa8aadaWgaaWcbaWdbi aaicdaa8aabeaak8qacaGGSaGaeyOjGWRaamyCa8aadaWgaaWcbaWd biaadYgacqGHsislcaaIXaaapaqabaGcpeGaaiykaaaa@6054@ :

  λ l r q 0 ,, q l1 = μ ρ  Se q l1 r 2 × × 12μ ρ  Se q l1 r , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakqaaceqaaabaaaaaaaaapeGaeq4UdW2damaaBaaaleaapeGaam iBaaWdaeqaaOWdbmaabmaapaqaa8qacaWGYbWdamaaBaaaleaapeGa amyCa8aadaWgaaadbaWdbiaaicdaa8aabeaal8qacaGGSaGaeyOjGW RaaiilaiaadghapaWaaSbaaWqaa8qacaWGSbGaeyOeI0IaaGymaaWd aeqaaaWcbeaaaOWdbiaawIcacaGLPaaacqGH9aqpdaWadaWdaeaape GaeqiVd02aaeWaa8aabaWdbiabeg8aYnaabmaapaqaa8qacaa5GcGa am4uaiaadwgacaWGXbWdamaaBaaaleaapeGaamiBaiabgkHiTiaaig daa8aabeaak8qadaqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaaGa ayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaa Wcbeqaa8qacqGHsislcaaIYaaaaOGaey41aqlabaGaey41aqRaaGjb Vpaacmaapaqaa8qacaaIXaGaeyOeI0IaaGOmaiabgwSixlabeY7aTn aabmaapaqaa8qacqaHbpGCdaqadaWdaeaapeGaaqoOaiaadofacaWG LbGaamyCa8aadaWgaaWcbaWdbiaadYgacqGHsislcaaIXaaapaqaba GcpeWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaaaiaawIcacaGL PaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGSaaaaaa@8D6E@

где ρ(Se q l1 (r))= j=0 l1 q j p j , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeg8aYjaacIcacaWGtbGaamyzaiaadg hapaWaaSbaaSqaa8qacaWGSbGaeyOeI0IaaGymaaWdaeqaaOWdbiaa cIcacaWGYbGaaiykaiaacMcacaaMe8Uaeyypa0JaaGPaVpaawahabe Wcpaqaa8qacaWGQbGaeyypa0JaaGimaaWdaeaapeGaamiBaiabgkHi Tiaaigdaa0WdaeaapeGaeyyeIuoaaOWaaSaaa8aabaWdbiaadghapa WaaSbaaSqaa8qacaWGQbaapaqabaaakeaapeGaamiCa8aadaahaaWc beqaa8qacaWGQbaaaaaakiaacYcaaaa@6718@  

q j 0,,p1 ,μ():[0,1][0,1] MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaWGQbaapa qabaGccaaMc8+dbiabgIGiopaacmaapaqaa8qacaaIWaGaaiilaiab gAci8kaacYcacaWGWbGaaGjbVlabgkHiTiaaigdaaiaawUhacaGL9b aacaGGSaGaaGjbVlabeY7aTjaacIcacqGHflY1caGGPaGaaGPaVlaa cQdacaGGBbGaaGimaiaacYcacaaIXaGaaiyxaiaaysW7cqGHsgIRca aMe8Uaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@709B@  — функция в единичном квадрате. В простейшем случае μ() MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbWexLMBsv3CZLwy Ubqegm1yO92BSj0BVT2qamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbqee0evGueE0jxyaibaieIcFD0df9vqqrpepC0xbbL8F4rq Wq=epeea0xe9Lqpe0xc9q8qqaqFn0dXdir=xcvk9pIe9v8qqaq=dir =f0=yqaqVeLsFr0=vr0=vr0db8meaacaqacmaadaWaaeqabaabcuaa gaaakeaaqaaaaaaaaaWdbiabeY7aTjaacIcacqGHflY1caGGPaaaaa@4FBA@  является тождественной функцией вида μ(x)=x.

4. ВЫВОДЫ

Предложенная нечеткая мера на р-адических шарах полностью удовлетворяет свойствам нечеткой меры, что вытекает из подстановки исходных данных свойств ограниченности, монотонности и непрерывности в соотношениях Утверждения 4. Данная мера учитывает структуру ограниченного числового множества в виде образов р-адических шаров и не требует задания точек данного множества, а соответственно и плотности нечеткой меры. Нечеткая мера на р-адических шарах полностью определяется лишь функцией параметра нормировки λ (модальностью нечеткой меры), которая однозначно задается р-адической координатой покрывающего шара. Таким образом нечеткая мера, предложенная в работе, является вещественнозначной функцией р-адического аргумента. Использование проектора при построении нечеткой меры снимает проблему определения нулевого уровня, позволяет обеспечить согласованность нечеткой меры на различных уровнях с учетом относительной нормировки в каждом покрывающем р-адическом шаре. Использование неравномерной нечеткой меры на р-адических шарах позволяет моделировать пространства с нестационарной нечеткой мерой, в которой параметр λ зависит от р-адической координаты. Применение данной меры открывает возможность моделирования динамики сложных ландшафтов для различных скалярных полей.

×

About the authors

V. P. Bocharnikov

INEKS-FT Consulting Group

Author for correspondence.
Email: bocharnikovvp@gmail.com
ORCID iD: 0000-0003-4398-5551
Ukraine, ul. Desyatinnaya 13а, Kiev, 03011

S. V. Sveshnikov

INEKS-FT Consulting Group

Email: bocharnikovvp@gmail.com
ORCID iD: 0000-0001-8924-4535
Ukraine, ul. Desyatinnaya 13а, Kiev, 03011

References

  1. Becker O.M., Karplus M. The topology of multidimensional protein energy surfaces: theory and application to peptide structure and kinetics // Journal of Chemical Physics. 1997. V. 106. P. 1495–1517.
  2. Grabisch M., Murofushi T., Sugeno M. Fuzzy Measures and Integrals: Theory and Applications. Berlin, Germany, Physica-Verlag GmbH & Co, 2000, 477 p., ISBN10 3790812587
  3. Wekker L.M. Psyche and reality: a unified theory of mental processes. — M.: Smysl, 1998. — 685 p. — Access mode: https://vshp.pro/wp-content/uploads/2020/03/Vekker-L.M.-Psihika-i-realnost.-Edinaya-teoriya-psihicheskih-protsessov.pdf
  4. Philosophical encyclopedic dictionary. / Chief editor: L. F. Ilyichev, P. N. Fedoseev, S. M. Kovalev, V. G. Panov. — M.: Soviet Encyclopedia, 1983. — 840 p.
  5. Aliev R. A. Fundamentals of the Fuzzy Logic-Based Generalized Theory of Decisions. Studies in Fuzziness and Soft Computing. Springer, 2013, 324 p. ISBN 3642348955
  6. Keller J. M., Derong L., Fogel D. B. Fundamentals of Computational Intelligence: Neural Networks, Fuzzy Systems, and Evolutionary Computation. IEEE Press Series on Computational Intelligence. John Wiley & Sons, 2016, 378 p. ISBN 1119214343
  7. Vladimirov V. S, Volovich I. V, Zelenov E. I. P-adic Analysis and Mathematical Physics. Series on Soviet and East European Mathematics (Vol 1). World Scientific, 1994, 340 p. ISBN 9814505765
  8. Yager R.R., Liping L. Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing (Vol 219). Springer, 2008, 806 p. ISBN 354044792X
  9. Torra V., Narukawa Y., Sugeno M. Non-Additive Measures: Theory and Applications. Studies in Fuzziness and Soft Computing (Vol 310). Springer, 2013, 201 p. ISBN 3319031554
  10. Bocharnikov V. P., Sveshnikov S. V. p-Adic Representation of Subsets of a Bounded Number Set. Programming and Computer Software, 2021, Vol. 47, No. 4, pp. 225–234.
  11. Koblitz N. p-adic Numbers, p-adic Analysis, and Zeta-Functions. Springer, Science & Business Media, 2012, 153 p. ISBN 1461211123
  12. Katok S. p-adic Analysis Compared with Real. Student mathematical library (Vol 37), American Mathematical Society. American Mathematical Soc., 2007, 152 p. ISBN 9780821842201
  13. Volovich I. V., Kozyrev S. V. p-Adic mathematical physics: basic constructions, applications to complex and nanoscopic systems, Mathematical physics and its applications. Introductory courses. Issue 1, Samara State. University, Samara, 2009. http://www.mi.ras.ru/noc/irreversibility/p-adicMF1.pdf
  14. Khrennikov A. Yu. Modeling of thinking processes in p-adic coordinate systems. — M.: FIZMATLIT, 2004. — 296 p. ISBN 5-9221-0501-9
  15. Kozyrev S. V. Wavelet theory as p-adic spectral analysis. Izv. RAN. Ser. Mat., 2002, Vol. 66, No. 2, pp. 149–158
  16. Кононюк А. Е. Обобщённая теория моделирования: Книга 2: Числа: количественные оценки параметров модели. Киев: «Освіта України», 2012. — 548 с. ISBN 9789667599508
  17. Deza M-M, Deza E. Encyclopedia of distances. Berlin, Springer, 2008. 412 p. (Russ. ed.: Deza M-M, Deza E. Entsiklopedicheskii slovar’ rasstoyanii. Moscow, Nauka Publ., 444 p)
  18. Borevich Z.I., Shafarevich I.R. Teoriya chisel [Number theory]. Moscow, Science. The main edition of the physical and mathematical literature, 3rd ed., 1985. 504 p.
  19. Bocharnikov V., Bocharnikov I., Sveshnikov S. Fundamentals of the systemic organization’s management. Theory and Practice. Berlin, LAP LAMBERT Academic Publishing, 2012, 296 p. ISBN 9783659223327

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Partition of the set I at p =3.

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».