Scalable Approach for Grafting Qubit Candidates onto The Surface of MOF-808 Framework
- Autores: Tomilov A.S.1,2, Yazikova A.A.1,2, Melnikov A.R.1, Smirnova K.A.1, Poryvaev A.S.1, Fedin M.V.1,2
-
Afiliações:
- International Tomography Center, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Edição: Volume 50, Nº 9 (2024)
- Páginas: 557-565
- Seção: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/272426
- DOI: https://doi.org/10.31857/S0132344X24090039
- EDN: https://elibrary.ru/LXPODV
- ID: 272426
Citar
Resumo
The development of quantum bits (qubits) is crucial for the progress of quantum technologies. Among various approaches, the qubits based on paramagnetic centers have decent advantages, including their diversity and possibilities of regular ordering, for example, within the structure of metal-organic frameworks (MOFs). In the present work a simple and scalable approach to obtain qubit candidates based on stable organic radical 3-carboxy-proxyl and MOF-808 framework has been demonstrated. Investigation of the obtained compounds with different radical amounts using electron paramagnetic resonance (EPR) demonstrates the presence of two fractions of radicals, which is supported by simulations. Sufficiently long phase memory time at room temperature for the radicals adsorbed into MOF (0.39 μs), as well as the observed Rabi nutations, allow considering this material as a platform for qubits design. The developed approach is capable of incorporating various amounts of paramagnetic centers into the MOF structure and can be employed to obtain other spin qubit candidates.
Palavras-chave
Texto integral

Sobre autores
A. Tomilov
International Tomography Center, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: mfedin@tomo.nsc.ru
Rússia, Novosibirsk; Novosibirsk
A. Yazikova
International Tomography Center, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: mfedin@tomo.nsc.ru
Rússia, Novosibirsk; Novosibirsk
A. Melnikov
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Rússia, Novosibirsk
K. Smirnova
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Rússia, Novosibirsk
A. Poryvaev
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Rússia, Novosibirsk
M. Fedin
International Tomography Center, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Autor responsável pela correspondência
Email: mfedin@tomo.nsc.ru
Rússia, Novosibirsk; Novosibirsk
Bibliografia
- DiVincenzo D.P. // Fortschritte Der Phys. 2000. V. 48. № 9-11. P. 771.
- Ladd T. D., Jelezko F., Laflamme R. et al. // Nature. 2010. V. 464. № 7285. P. 45.
- Nakazawa S., Nishida S., Ise T. et al. // Angew. Chem. Int. Ed. 2012. V. 51. № 39. P. 9860.
- Dolde F., Fedder H., Doherty M.W. et al. // Nat. Phys. 2011. V. 7. № 6. P. 459.
- Atzori M., Sessoli R. // J. Am. Chem. Soc. 2019. V. 141. № 29. P. 11339.
- Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information: 10th Anniversary. Cambridge Univ. Press, 2010.
- Knill E., Laflamme R., Milburn G.J. // Nature. 2001. V. 409. № 6816. P. 46.
- Bruzewicz C.D., Chiaverini J., McConnell R. et al. // Appl. Phys. Rev. 2019. V. 6. № 2. P. 021314.
- Benhelm J., Kirchmair G., Roos C.F. et al. // Nat. Phys. 2008. V. 4. № 6. P. 463.
- Devoret M.H., Schoelkopf R.J. // Science. 2013. V. 339. № 6124. P. 1169.
- Siddiqi I. // Nat. Rev. Mater. 2021. V. 6. № 10. P. 875.
- Kjaergaard M., Schwartz M.E., Braumüller J. et al. // Annu. Rev. Condens. Matter Phys. 2020. V. 11. № 1. P. 369.
- Trauzettel B., Bulaev D.V., Loss D. et al. // Nat. Phys. 2007. V. 3. № 3. P. 192.
- Doherty M.W., Manson N.B., Delaney P. et al. // Phys. Rep. 2013. V. 528. № 1. P. 1.
- Togan E., Chu Y., Trifonov A. S. et al. // Nature. 2010. V. 466. № 7307. P. 730.
- Hanson R., Awschalom D.D. // Nature. 2008. V. 453. № 7198. P. 1043.
- Chatterjee A., Stevenson P., De Franceschi S. et al. // Nature Rev. Phys. 2021. V. 3. № 3. P. 157.
- Yamabayashi T., Atzori M., Tesi L., et al. // J. Am. Chem. Soc. 2018. V. 140. № 38. P. 12090.
- Fataftah M.S., Bayliss S.L., Laorenza D.W. et al. // J. Am. Chem. Soc. 2020. V. 142. № 48. P. 20400.
- Starikova A.A., Starikov A.G., Minkin V.I. // Russ. J. Coord. Chem. 2017. V. 43. № 4. P. 197.
- Zadrozny J.M., Gallagher A.T., Harris T.D. et al. // J. Am. Chem. Soc. 2017. V. 139. № 20. P. 7089.
- Stamp P.C.E., Gaita-Ariño A. // J. Mater. Chem. 2009. V. 19. № 12. P. 1718.
- Gaita-Ariño A., Luis F., Hill S. et al. // Nat. Chem. 2019. V. 11. № 4. P. 301.
- Poryvaev A.S., Gjuzi E., Polyukhov D.M. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 16. P. 8683.
- Oanta A.K., Collins K.A., Evans A.M. et al. // J. Am. Chem. Soc. 2023. V. 145. № 1. P. 689.
- Wakizaka M., Gupta S., Wan Q. et al. // Chem. Eur. J. 2023. V. 30. № 12. Art. e202304202.
- Yu C.J., Krzyaniak M.D., Fataftah M.S., et al. // Chem. Sci. 2019. V. 10. № 6. P. 1702.
- Sun L. et al. // J. Am. Chem. Soc. 2022. V. 144. № 41. P. 19008.
- Альтшулер С.А., Козырев Б.М. // Успехи физ. наук. 1957. V. 63. № 11. P. 533.
- Weil J.A., Bolton J.R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, 2007.
- Schweiger A., Jeschke G. Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, 2001.
- Zadrozny J.M., Niklas J., Poluektov O.G. et al. // ACS Cent Sci. 2015. V. 1. № 9. P. 488.
- Schäfter D., Wischnat J., Tesi L. et al. // Adv. Mater. 2023. V. 35. № 38. P. 2302114.
- Liu X. et al. // Chem. Mater. 2021. V. 33. № 4. P. 1444.
- Yan X., Wang K., Xu X. et al. // Inorg. Chem. 2018. V. 57. № 14. P. 8033.
- Furukawa H., Gándara F., Zhang Y.-B. et al. // J. Am. Chem. Soc. 2014. V. 136. № 11. P. 4369.
- Paletta J.T., Pink M., Foley B. et al. // Org. Lett. 2012. V. 14. № 20. P. 5322.
- Stoll S., Schweiger A. // J. Magn. Res. 2006. V. 178. № 1. P. 42.
- Jiang J., Gándara F., Zhang Y.-B. et al. // J. Am. Chem. Soc. 2014. V. 136. № 37. P. 12844.
- Peng Y., Huang H., Zhang Y. et al. // Nat. Commun. 2018. V. 9. № 1. P. 187.
- Li J., Huang H., Xue W. et al. // Nat. Catal. 2021. V. 4. № 8. P. 719.
- Lyu H., Chen O.I.-F., Hanikel N. et al. // J. Am, Chem. Soc. 2022. V. 144. № 5. P. 2387.
- Kuzhelev A.A., Strizhakov R.K., Krumkacheva O.A. et al. // J. Magn. Res. 2016. V. 266. P. 1.
- Chernova D.A., Vorobiev A.K. // J. Polym. Sci. B. 2009. V. 47. № 1. P. 107.
- Rajca A., Kathirvelu V., Roy S.K. et al. // Chem. Eur. J. 2010. V. 16. № 19. P. 5778.
- Ivanov M.Yu., Prikhod′ko S.A., Bakulina O.D. et al. // Molecules. 2021. V. 26. № 19.
Arquivos suplementares
