Scalable Approach for Grafting Qubit Candidates onto The Surface of MOF-808 Framework
- Authors: Tomilov A.S.1,2, Yazikova A.A.1,2, Melnikov A.R.1, Smirnova K.A.1, Poryvaev A.S.1, Fedin M.V.1,2
-
Affiliations:
- International Tomography Center, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 50, No 9 (2024)
- Pages: 557-565
- Section: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/272426
- DOI: https://doi.org/10.31857/S0132344X24090039
- EDN: https://elibrary.ru/LXPODV
- ID: 272426
Cite item
Abstract
The development of quantum bits (qubits) is crucial for the progress of quantum technologies. Among various approaches, the qubits based on paramagnetic centers have decent advantages, including their diversity and possibilities of regular ordering, for example, within the structure of metal-organic frameworks (MOFs). In the present work a simple and scalable approach to obtain qubit candidates based on stable organic radical 3-carboxy-proxyl and MOF-808 framework has been demonstrated. Investigation of the obtained compounds with different radical amounts using electron paramagnetic resonance (EPR) demonstrates the presence of two fractions of radicals, which is supported by simulations. Sufficiently long phase memory time at room temperature for the radicals adsorbed into MOF (0.39 μs), as well as the observed Rabi nutations, allow considering this material as a platform for qubits design. The developed approach is capable of incorporating various amounts of paramagnetic centers into the MOF structure and can be employed to obtain other spin qubit candidates.
Full Text

About the authors
A. S. Tomilov
International Tomography Center, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: mfedin@tomo.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
A. A. Yazikova
International Tomography Center, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: mfedin@tomo.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
A. R. Melnikov
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian Federation, Novosibirsk
K. A. Smirnova
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian Federation, Novosibirsk
A. S. Poryvaev
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian Federation, Novosibirsk
M. V. Fedin
International Tomography Center, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Author for correspondence.
Email: mfedin@tomo.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
References
- DiVincenzo D.P. // Fortschritte Der Phys. 2000. V. 48. № 9-11. P. 771.
- Ladd T. D., Jelezko F., Laflamme R. et al. // Nature. 2010. V. 464. № 7285. P. 45.
- Nakazawa S., Nishida S., Ise T. et al. // Angew. Chem. Int. Ed. 2012. V. 51. № 39. P. 9860.
- Dolde F., Fedder H., Doherty M.W. et al. // Nat. Phys. 2011. V. 7. № 6. P. 459.
- Atzori M., Sessoli R. // J. Am. Chem. Soc. 2019. V. 141. № 29. P. 11339.
- Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information: 10th Anniversary. Cambridge Univ. Press, 2010.
- Knill E., Laflamme R., Milburn G.J. // Nature. 2001. V. 409. № 6816. P. 46.
- Bruzewicz C.D., Chiaverini J., McConnell R. et al. // Appl. Phys. Rev. 2019. V. 6. № 2. P. 021314.
- Benhelm J., Kirchmair G., Roos C.F. et al. // Nat. Phys. 2008. V. 4. № 6. P. 463.
- Devoret M.H., Schoelkopf R.J. // Science. 2013. V. 339. № 6124. P. 1169.
- Siddiqi I. // Nat. Rev. Mater. 2021. V. 6. № 10. P. 875.
- Kjaergaard M., Schwartz M.E., Braumüller J. et al. // Annu. Rev. Condens. Matter Phys. 2020. V. 11. № 1. P. 369.
- Trauzettel B., Bulaev D.V., Loss D. et al. // Nat. Phys. 2007. V. 3. № 3. P. 192.
- Doherty M.W., Manson N.B., Delaney P. et al. // Phys. Rep. 2013. V. 528. № 1. P. 1.
- Togan E., Chu Y., Trifonov A. S. et al. // Nature. 2010. V. 466. № 7307. P. 730.
- Hanson R., Awschalom D.D. // Nature. 2008. V. 453. № 7198. P. 1043.
- Chatterjee A., Stevenson P., De Franceschi S. et al. // Nature Rev. Phys. 2021. V. 3. № 3. P. 157.
- Yamabayashi T., Atzori M., Tesi L., et al. // J. Am. Chem. Soc. 2018. V. 140. № 38. P. 12090.
- Fataftah M.S., Bayliss S.L., Laorenza D.W. et al. // J. Am. Chem. Soc. 2020. V. 142. № 48. P. 20400.
- Starikova A.A., Starikov A.G., Minkin V.I. // Russ. J. Coord. Chem. 2017. V. 43. № 4. P. 197.
- Zadrozny J.M., Gallagher A.T., Harris T.D. et al. // J. Am. Chem. Soc. 2017. V. 139. № 20. P. 7089.
- Stamp P.C.E., Gaita-Ariño A. // J. Mater. Chem. 2009. V. 19. № 12. P. 1718.
- Gaita-Ariño A., Luis F., Hill S. et al. // Nat. Chem. 2019. V. 11. № 4. P. 301.
- Poryvaev A.S., Gjuzi E., Polyukhov D.M. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 16. P. 8683.
- Oanta A.K., Collins K.A., Evans A.M. et al. // J. Am. Chem. Soc. 2023. V. 145. № 1. P. 689.
- Wakizaka M., Gupta S., Wan Q. et al. // Chem. Eur. J. 2023. V. 30. № 12. Art. e202304202.
- Yu C.J., Krzyaniak M.D., Fataftah M.S., et al. // Chem. Sci. 2019. V. 10. № 6. P. 1702.
- Sun L. et al. // J. Am. Chem. Soc. 2022. V. 144. № 41. P. 19008.
- Альтшулер С.А., Козырев Б.М. // Успехи физ. наук. 1957. V. 63. № 11. P. 533.
- Weil J.A., Bolton J.R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, 2007.
- Schweiger A., Jeschke G. Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, 2001.
- Zadrozny J.M., Niklas J., Poluektov O.G. et al. // ACS Cent Sci. 2015. V. 1. № 9. P. 488.
- Schäfter D., Wischnat J., Tesi L. et al. // Adv. Mater. 2023. V. 35. № 38. P. 2302114.
- Liu X. et al. // Chem. Mater. 2021. V. 33. № 4. P. 1444.
- Yan X., Wang K., Xu X. et al. // Inorg. Chem. 2018. V. 57. № 14. P. 8033.
- Furukawa H., Gándara F., Zhang Y.-B. et al. // J. Am. Chem. Soc. 2014. V. 136. № 11. P. 4369.
- Paletta J.T., Pink M., Foley B. et al. // Org. Lett. 2012. V. 14. № 20. P. 5322.
- Stoll S., Schweiger A. // J. Magn. Res. 2006. V. 178. № 1. P. 42.
- Jiang J., Gándara F., Zhang Y.-B. et al. // J. Am. Chem. Soc. 2014. V. 136. № 37. P. 12844.
- Peng Y., Huang H., Zhang Y. et al. // Nat. Commun. 2018. V. 9. № 1. P. 187.
- Li J., Huang H., Xue W. et al. // Nat. Catal. 2021. V. 4. № 8. P. 719.
- Lyu H., Chen O.I.-F., Hanikel N. et al. // J. Am, Chem. Soc. 2022. V. 144. № 5. P. 2387.
- Kuzhelev A.A., Strizhakov R.K., Krumkacheva O.A. et al. // J. Magn. Res. 2016. V. 266. P. 1.
- Chernova D.A., Vorobiev A.K. // J. Polym. Sci. B. 2009. V. 47. № 1. P. 107.
- Rajca A., Kathirvelu V., Roy S.K. et al. // Chem. Eur. J. 2010. V. 16. № 19. P. 5778.
- Ivanov M.Yu., Prikhod′ko S.A., Bakulina O.D. et al. // Molecules. 2021. V. 26. № 19.
Supplementary files
