Mixed-ligand complex [Cu4(bpy)4(PO4)2(CO3)(H2O)2]: synthesis, crystal structure and biological properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interaction in the system {Сu(OAc)2·H2O–phytic acid–2,2`-bipyridine (bpy)} in an aqueous-methanol solution led to the formation of a molecular mixed-ligand tetranuclear complex [(Cu4(bpy)4(PO4)2(CO3 )(H2O)2]13H2O (I), the structure of which was established based on the results of an X-ray diffraction experiment (CCDC 2262998). According to X-ray diffraction data, the molecule contains four nonequivalent Cu2+ cations, which coordinate two phosphate anions (PO43-, remaining as a result transformation of the phytate cycle), four neutral bpy, two water molecules and one carbonate anion fragment (CO32-). The presence of a large number of solvate water molecules in the outer coordination sphere created a hydrogen-bonded framework involved in the stabilization of the crystal packing. Study of antimycobacterial activity of I in against the non-pathogenic strain Mycolicibacterium smegmatis showed its high bioeffectiveness.

Sobre autores

K. Koshenskova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

N. Makarenko

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia

Email: makarenko@ich.dvo.ru
Россия, Владивосток

D. Baravikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва; Россия, Москва

F. Dolgushin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: fmdolgushin@gmail.com
Россия, Москва

O. Bekker

Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва; Россия, Москва

I. Lutsenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Autor responsável pela correspondência
Email: irinalu05@rambler.ru
Россия, Москва

Bibliografia

  1. Barry N., Sadler P. // Chem. Commun. 2013. V. 49. P. 5106.
  2. Chan W., Wong W. // Polyhedron. 2014. V. 83. P. 150.
  3. Medici S., Peana M., Nurchi V. et al. // Coord. Chem. Rev. 2015. V. 284. P. 329.
  4. Che C.-M., Siu F.-M. // Curr. Opin. Chem. Biol. 2010. V. 14. P. 255.
  5. Dilruba S., Kalayda G.V. // Cancer Chemother. Pharmacol. 2016. V. 77. P. 1103.
  6. Porchia M., Pellei M., Del Bello F. et al. // Molecules. 2020. V. 25. P. 5814.
  7. Linder M. C., Hazegh-Azam M. // Am. J. Clin. Nutr. 1996. V. 63. P. 797.
  8. Kaim W., Rall J. // Angew. Chem. Int. Ed. 1996. V. 35. P. 43.
  9. Crichton R.R., Pierre J.-L. // Biometals. 2001. V. 14. P. 99.
  10. Climova A., Pivovarova E., Szczesio M. et al. // J. Inorg. Biochem. 2023. V. 240. P. 112108.
  11. Gordon A. T., Abosede O., Ntsimango S. et al. // Inorg. Chim. Acta. 2020. V. 510. P. 119744.
  12. Bravo-Gómez M., Campero-Peredo C., García-Conde D. et al. // Polyhedron. 2015. V. 102. P. 530.
  13. Davila-Manzanilla S., Figueroa-de-Paz Y., Mejia C. et al. // Eur. J. Med. Chem. 2017. V. 129. P. 266.
  14. Correia I., Borovic S., Cavaco I. et al. // J. Inorg. Biochem. 2017. V. 175. P. 284.
  15. Луценко И.А., Баравиков Д.Е., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 6. С. 366 (Lutsenko I.A., Baravikov D.E., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 6. P. 411). https://doi.org/10.1134/S1070328420060056
  16. Луценко И.А., Ямбулатов Д.С., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 12. С. 715 (Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 12. P. 787). https://doi.org/10.1134/S1070328420120040
  17. Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // Chem. Select. 2020. V. 5. P. 11837.
  18. Lutsenko I.A., Baravikov D.E., Koshenskova K.A. et al. // RSC Advances. 2022. V. 12, P. 5173.
  19. Кошенскова К.А., Луценко И.А., Нелюбина Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1398 (Koshenskova K.A., Lutsenko I.A., Nelyubina Yu.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1545). https://doi.org/10.31857/S0044457X22700106
  20. Naletova I., Satriano K., Cursi A. et al. // Oncotarget. 2018. V. 9. P. 36289.
  21. Pivetta T., Trudu F., Valletta E. et al. // J. Inorg. Biochem. 2014. V. 141. P. 103.
  22. Кошенскова К. А., Баравиков Д. Е., Нелюбина Ю.В. и др. // Коорд. химия. 2023. Т. 49. № 10. С. 582 (Koshenskova K.A., Baravikov D.E., Nelyubina Yu.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 10. P. 660). https://doi.org/10.1134/S1070328423600730
  23. Eremina J.A., Lider E.V., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2021. V. 516. P. 120169.
  24. Eremina J.A., Smirnova K.S., Berezin A.S. et al. // J. Mol. Struct. 2021. V. 1245. P. 131024.
  25. Saburov K.A., Kamilov Kh.M. // Chem. Nat. Compd. 1989. V. 25. № 6. P. 695.
  26. Barrientos L.G., Murthy P.P.N. // Carbohydr. Res. 1996. V. 296. P. 39.
  27. Raboy V. // Phytochem. 2003. V. 64. № 6. P. 1033.
  28. Vasca E., Materazzi S., Caruso T. et al. // Anal. Bioanal. Chem. Res. 2002. V. 374. № 1. P. 173.
  29. Stefano C.De, Giuffre O., Milea D. et al. // Chem. Spec. Bioavail. 2002. V. 15. № 2. P. 29.
  30. Yu S., Cowieson A., Gilbert C. et al. // J. Anim. Sci. 2012. V. 90. P. 1824.
  31. Nielsen A.V.F., Tetens I., Meyer A.S. // Nutrients. 2013. V. 5. P. 3074.
  32. Veiga N., Torres J., Bazzicalupi C. et al. // Chem. Commun. 2014. V. 50. P. 14971.
  33. Quiñone D., Veiga N., Torres J. et al. // Dalton Trans. 2016. V. 45. P. 12156.
  34. Quiñone D., Veiga N., Torres J. et al. // ChemPlusChem. 2017. V. 82. № 5. P. 721.
  35. Cai K., Sun F., Liang. X. et al. // J. Mater. Chem. A. 2017. V. 5. P. 12943.
  36. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  37. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  38. Ramon-García S., Ng C., Anderson H. et al. // Antimikrob. Agen. Chemother. 2011. V. 8. P. 3861.
  39. Bekker O.B., Sokolov D.N., Luzina O.A. et al. // Med. Chem. Res. 2015. V. 24. P. 2926.
  40. Луценко И.А., Кискин М.А., Кошенскова К.А. и др. // Изв. АН. Сер. хим. 2021. Т. 3. С. 463 (Lutsenko I.A., Kiskin M.A., Koshenskova K.A. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. P. 463). https://doi.org/10.1007/s11172-021-3109-3
  41. Луценко И.А., Никифорова М.Е., Кошенскова К.А. и др. // Коорд. химия. 2022. Т. 48. С. 83 (Lutsenko I.A., Nikiforova M.E., Koshenskova K.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 12 P. 879). https://doi.org/10.31857/S0132344X22020049
  42. Uvarova M.A., Lutsenko I.A., Kiskin M.A. et al. // Polyhedron. 2021. V. 203. P. 115241.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (23KB)
3.

Baixar (534KB)
4.

Baixar (536KB)
5.

Baixar (626KB)


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies