Methods for Interactome Analysis of Microproteins Encoded by Small Open Reading Frames

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recent studies have shown that small open reading frames (sORFs, <100 codons) can encode peptides or microproteins that perform important functions in prokaryotic and eukaryotic cells. It has been established that sORF translation products are involved in the regulation of many processes, for example, they modulate the activity of the mitochondrial respiratory chain or the functions of muscle cells in mammals. However, the identification and subsequent functional analysis of peptides or microproteins encoded by sORFs is a non-trivial task and requires the use of special approaches. One of the critical steps in functional analysis is identification of protein partners of the peptide under study. This review considers the features of the interactome analysis of short protein molecules and describes the approaches currently used for studies in the field.

About the authors

I. A. Sedlov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: feigor@yandex.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

I. A. Fesenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Author for correspondence.
Email: feigor@yandex.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

References

  1. Guerra-Almeida D., Tschoeke D.A., Nunes-da-Fonseca R. // DNA Res. 2021. V. 28. P. 1–18. https://doi.org/10.1093/dnares/dsab007
  2. Yang X., Tschaplinski T.J., Hurst G.B., Jawdy S., Abraham P.E., Lankford P.K., Adams R.M., Shah M.B., Hettich R.L., Lindquist E., Kalluri U.C., Gunter L.E., Pennacchio C., Tuskan G.A. // Genome Res. 2011. V. 21. P. 634–641. https://doi.org/10.1101/gr.109280.110
  3. Andrews S.J., Rothnagel J.A. // Nat. Rev. Genet. 2014. V. 15. P. 193–204. https://doi.org/10.1038/nrg3520
  4. Storz G., Wolf Y.I., Ramamurthi K.S. // Annu. Rev. Biochem. 2014. V. 83. P. 753–777. https://doi.org/10.1146/annurev-biochem-070611-102400
  5. Dinger M.E., Pang K.C., Mercer T.R., Mattick J.S. // PLoS Comput. Biol. 2008. V. 4. P. e1000176. https://doi.org/10.1371/journal.pcbi.1000176
  6. Couso J.-P., Patraquim P. // Nat. Rev. Mol. Cell Biol. 2017. V. 18. P. 575–589. https://doi.org/10.1038/nrm.2017.58
  7. Chen J., Brunner A.-D., Cogan J.Z., Nuñez J.K., Fields A.P., Adamson B., Itzhak D.N., Li J.Y., Mann M., Leonetti M.D., Leonetti M.D., Weissman J.S. // Science. 2020. V. 367. P. 1140–1146. https://doi.org/10.1126/science.aay0262
  8. Wright B.W., Yi Z., Weissman J.S., Chen J. // Trends Cell Biol. 2022. V. 32. P. 243–258. https://doi.org/10.1016/j.tcb.2021.10.010
  9. Huang J.-Z., Chen M., Chen D., Gao X.-C., Zhu S., Huang H., Hu M., Zhu H., Yan G.-R. // Mol. Cell. 2017. V. 68. P. 171–184. https://doi.org/10.1016/j.molcel.2017.09.015
  10. Johnstone T.G., Bazzini A.A., Giraldez A.J. // EMBO J. 2016. V. 35. P. 706–723. https://doi.org/10.15252/embj.201592759
  11. Zhang H., Wang Y., Wu X., Tang X., Wu C., Lu J. // Nat. Commun. 2021. V. 12. P. 1076. https://doi.org/10.1038/s41467-021-21394-y
  12. Eisenberg E., Levanon E.Y. // Trends Genet. 2013. V. 29. P. 569–574. https://doi.org/10.1016/j.tig.2013.05.010
  13. Hayashi N., Sasaki S., Takahashi H., Yamashita Y., Naito S., Onouchi H. // Nucleic Acids Res. 2017. V. 45. P. 8844–8858. https://doi.org/10.1093/nar/gkx528
  14. Hartford C.C.R., Lal A. // Mol. Cell. Biol. 2020. V. 40. P. e00528-19. https://doi.org/10.1128/MCB.00528-19
  15. Kopp F., Mendell J.T. // Cell. 2018. V. 172. P. 393–407. https://doi.org/10.1016/j.cell.2018.01.011
  16. Ji Z., Song R., Regev A., Struhl K. // eLife. 2015. V. 4. P. e08890. https://doi.org/10.7554/eLife.08890
  17. Patraquim P., Magny E.G., Pueyo J.I., Platero A.I., Couso J.P. // Nat. Commun. 2022. V. 13. P. 6515. https://doi.org/10.1038/s41467-022-34094-y
  18. Ulitsky I. // Nat. Rev. Genet. 2016. V. 17. P. 601–614. https://doi.org/10.1038/nrg.2016.85
  19. Nelson B.R., Makarewich C.A., Anderson D.M., Winders B.R., Troupes C.D., Wu F., Reese A.L., McAnally J.R., Chen X., Kavalali E.T., Cannon S.C., Houser S.R., Bassel-Duby R., Olson E.N. // Science. 2016. V. 351. P. 271–275. https://doi.org/10.1126/science.aad4076
  20. Hao Y., Zhang L., Niu Y., Cai T., Luo J., He S., Zhang B., Zhang D., Qin Y., Yang F., Chen R. // Brief. Bioinform. 2018. V. 19. P. 636–643. https://doi.org/10.1093/bib/bbx005
  21. Polycarpou-Schwarz M., Groß M., Mestdagh P., Schott J., Grund S.E., Hildenbrand C., Rom J., Aulmann S., Sinn H.-P., Vandesompele J., Diederichs S. // Oncogene. 2018. V. 37. P. 4750–4768. https://doi.org/10.1038/s41388-018-0281-5
  22. Guo B., Wu S., Zhu X., Zhang L., Deng J., Li F., Wang Y., Zhang S., Wu R., Lu J., Zhou Y. // EMBO J. 2020. V. 39. P. e102190. https://doi.org/10.15252/embj.2019102190
  23. Rubtsova M., Naraykina Y., Vasilkova D., Meerson M., Zvereva M., Prassolov V., Lazarev V., Manuvera V., Kovalchuk S., Anikanov N., Butenko I., Pobeguts O., Govorun V., Dontsova O. // Nucleic Acids Res. 2018. V. 46. P. 8966–8977. https://doi.org/10.1093/nar/gky705
  24. Chugunova A., Loseva E., Mazin P., Mitina A., Navalayeu T., Bilan D., Vishnyakova P., Marey M., Golovina A., Serebryakova M., Pletnev P., Rubtsova M., Mair W., Vanyushkina A., Khaitovich P., Belousov V., Vysokikh M., Sergiev P., Dontsova O. // Proc. Natl. Acad. Sci. USA. 2019. V. 116. P. 4940–4945. https://doi.org/10.1073/pnas.1809105116
  25. Niu L., Lou F., Sun Y., Sun L., Cai X., Liu Z., Zhou H., Wang H., Wang Z., Bai J., Yin, Q., Zhang J., Chen L., Peng D., Xu Z., Gao Y., Tang S., Fan L., Wang H. // Sci. Adv. 2020. V. 6. P. eaaz2059. https://doi.org/10.1126/sciadv.aaz2059
  26. Immarigeon C., Frei Y., Delbare S.Y.N., Gligorov D., Machado Almeida P., Grey J., Fabbro L., Nagoshi E., Billeter J.-C., Wolfner M.F., Karch F., Maeda R.K. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. P. e2001897118. https://doi.org/10.1073/pnas.2001897118
  27. Anderson D.M., Anderson K.M., Chang C.-L., Makarewich C.A., Nelson B.R., McAnally J.R., Kasaragod P., Shelton J.M., Liou J., Bassel-Duby R., Olson E.N. // Cell. 2015. V. 160. P. 595–606. https://doi.org/10.1016/j.cell.2015.01.009
  28. Casson S.A., Chilley P.M., Topping J.F., Evans I.M., Souter M.A., Lindsey K. // Plant Cell. 2002. V. 14. P. 1705–1721. https://doi.org/10.1105/tpc.002618
  29. Narita N.N., Moore S., Horiguchi G., Kubo M., Demura T., Fukuda H., Goodrich J., Tsukaya H. // Plant J. 2004. V. 38. P. 699–713. https://doi.org/10.1111/j.1365-313X.2004.02078.x
  30. Guo P., Yoshimura A., Ishikawa N., Yamaguchi T., Guo Y., Tsukaya H. // J. Plant Res. 2015. V. 128. P. 497–510. https://doi.org/10.1007/s10265-015-0703-1
  31. Röhrig H., Schmidt J., Miklashevichs E., Schell J., John M. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 1915–1920. https://doi.org/10.1073/pnas.022664799
  32. Blanvillain R., Young B., Cai Y.-M., Hecht V., Varoquaux F., Delorme V., Lancelin J.-M., Delseny M., Gallois P. // EMBO J. 2011. V. 30. P. 1173–1183. https://doi.org/10.1038/emboj.2011.14
  33. Frank M.J., Cartwright H.N., Smith L.G. // Development. 2003. V. 130. P. 753–762. https://doi.org/10.1242/dev.00290
  34. Dong X., Wang D., Liu P., Li C., Zhao Q., Zhu D., Yu J. // J. Exp. Bot. 2013. V. 64. P. 2359–2372. https://doi.org/10.1093/jxb/ert093
  35. Wang D., Li C., Zhao Q., Zhao L., Wang M., Zhu D., Ao G., Yu J. // Funct. Plant Biol. 2009. V. 36. P. 73–85. https://doi.org/10.1071/FP08154
  36. De Coninck B., Carron D., Tavormina P., Willem L., Craik D.J., Vos C., Thevissen K., Mathys J., Cammue B.P.A. // J. Exp. Bot. 2013. V. 64. P. 5297–5307. https://doi.org/10.1093/jxb/ert295
  37. Waugh D.S. // Trends Biotechnol. 2005. V. 23. P. 316–320. https://doi.org/10.1016/j.tibtech.2005.03.012
  38. Kimple M.E., Brill A.L., Pasker R.L. // Curr. Protoc. Protein Sci. 2013. V. 73. P. 9.9.1–9.9.23. https://doi.org/10.1002/0471140864.ps0909s73
  39. Jackson R., Kroehling L., Khitun A., Bailis W., Jarret A., York A.G., Khan O.M., Brewer J.R., Skadow M.H., Duizer C., Harman C.C.D., Chang L., Bielecki P., Solis A.G., Steach H.R., Slavoff S., Flavell R.A. // Nature. 2018. V. 564. P. 434–438. https://doi.org/10.1038/s41586-018-0794-7
  40. Arnoult N., Correia A., Ma J., Merlo A., Garcia-Gomez S., Maric M., Tognetti M., Benner C.W., Boulton S.J., Saghatelian A., Karlseder J. // Nature. 2017. V. 549. P. 548–552. https://doi.org/10.1038/nature24023
  41. Pronier E., Cifani P., Merlinsky T.R., Berman K.B., Somasundara A.V.H., Rampal R.K., LaCava J., Wei K.E., Pastore F., Maag J.L., Park J., Koche R., Kentsis A., Levine R.L. // JCI Insight. 2018. V. 3. № 22. https://doi.org/10.1172/jci.insight.122703
  42. Wang F., Zhu S., Fisher L.A., Wang W., Oakley G.G., Li C., Peng A. // Sci. Rep. 2018. V. 8. P. 2683. https://doi.org/10.1038/s41598-018-21040-6
  43. Cristea I.M., Williams R., Chait B.T., Rout M.P. // Mol. Cell. Proteomics. 2005. V. 4. P. 1933–1941. https://doi.org/10.1074/mcp.M500227-MCP200
  44. Schlesinger D., Elsässer S.J. // FEBS J. 2022. V. 289. P. 53–74. https://doi.org/10.1111/febs.15769
  45. LaCava J., Molloy K.R., Taylor M.S., Domanski M., Chait B.T., Rout M.P. // Biotechniques. 2015. V. 58. P. 103–119. https://doi.org/10.2144/000114262
  46. LaCava J., Fernandez-Martinez J., Hakhverdyan Z., Rout M.P. // Cold Spring Harb. Protoc. 2016. V. 2016. P. 601–605. https://doi.org/10.1101/pdb.top077545
  47. Gerace E., Moazed D. // Methods Enzymol. 2015. V. 559. P. 99–110. https://doi.org/10.1016/bs.mie.2014.11.010
  48. Jia J., Jin J., Chen Q., Yuan Z., Li H., Bian J., Gui L. // Biol. Res. 2020. V. 53. P. 24. https://doi.org/10.1186/s40659-020-00290-7
  49. Zhang S., Reljić B., Liang C., Kerouanton B., Francisco J.C., Peh J.H., Mary C., Jagannathan N.S., Olexiouk V., Tang C., Fidelito G., Nama S., Cheng R.K., Wee C.L., Wang L.C., Duek Roggli P., Sampath P., Lane L., Petretto E., Sobota R.M., Jesuthasan S., Tucker-Kellogg L., Reversade B., Menschaert G., Sun L., Stroud D.A., Ho L. // Nat. Commun. 2020. V. 11. P. 1312. https://doi.org/10.1038/s41467-020-14999-2
  50. Hopp T.P., Prickett K.S., Price V.L., Libby R.T., March C.J., Pat Cerretti D., Urdal D.L., Conlon P.J. // Biotechnology. 1988. V. 6. P. 1204–1210. https://doi.org/10.1038/nbt1088-1204
  51. Schäfer K., Braun T. // Biochem. Biophys. Res. Commun. 1995. V. 207. P. 708–714. https://doi.org/10.1006/bbrc.1995.1245
  52. Zhang Y., Natale R., Domingues A.P. Júnior, Toleco M.R., Siemiatkowska B., Fàbregas N., Fernie A.R. // Curr. Protoc. Plant. Biol. 2019. V. 4. P. e20099. https://doi.org/10.1002/cppb.20099
  53. Buker S.M., Iida T., Bühler M., Villén J., Gygi S.P., Nakayama J.-I., Moazed D. // Nat. Struct. Mol. Biol. 2007. V. 14. P. 200–207. https://doi.org/10.1038/nsmb1211
  54. Lightfoot J.W., Wilecki M., Rödelsperger C., Moreno E., Susoy V., Witte H., Sommer R.J. // Science. 2019. V. 364. P. 86–89. https://doi.org/10.1126/science.aav9856
  55. D’Lima N.G., Ma J., Winkler L., Chu Q., Loh K.H., Corpuz E.O., Budnik B.A., Lykke-Andersen J., Saghatelian A., Slavoff S.A. // Nat. Chem. Biol. 2017. V. 13. P. 174–180. https://doi.org/10.1038/nchembio.2249
  56. Matsumoto A., Pasut A., Matsumoto M., Yamashita R., Fung J., Monteleone E., Saghatelian A., Nakayama K.I., Clohessy J.G., Pandolfi P.P. // Nature. 2017. V. 541. P. 228–232. https://doi.org/10.1038/nature21034
  57. Field J., Nikawa J., Broek D., MacDonald B., Rodgers L., Wilson I.A., Lerner R.A., Wigler M. // Mol. Cell. Biol. 1988. V. 8. P. 2159–2165. https://doi.org/10.1128/mcb.8.5.2159-2165.1988
  58. Schembri L., Dalibart R., Tomasello F., Legembre P., Ichas F., De Giorgi F. // Nat. Methods. 2007. V. 4. P. 107–108. https://doi.org/10.1038/nmeth0207-107
  59. Makarewich C.A., Munir A.Z., Bezprozvannaya S., Gibson A.M., Young Kim S., Martin-Sandoval M.S., Mathews T.P., Szweda L.I., Bassel-Duby R., Olson E.N. // Proc. Natl. Acad. Sci. USA. 2022. V. 119. P. e2120476119. https://doi.org/10.1073/pnas.2120476119
  60. Evan G.I., Lewis G.K., Ramsay G., Bishop J.M. // Mol. Cell. Biol. 1985. V. 5. P. 3610–3616. https://doi.org/10.1128/mcb.5.12.3610-3616.1985
  61. Tollis S., Singh J., Palou R., Thattikota Y., Ghazal G., Coulombe-Huntington J., Tang X., Moore S., Blake D., Bonneil E., Royer C.A., Thibault P., Tyers M. // PLoS Biol. 2022. V. 20. P. e3001548. https://doi.org/10.1371/journal.pbio.3001548
  62. Magny E.G., Platero A.I., Bishop S.A., Pueyo J.I., Aguilar-Hidalgo D., Couso J.P. // Nat. Commun. 2021. V. 12. P. 5660. https://doi.org/10.1038/s41467-021-25785-z
  63. Fu H., Wang T., Kong X., Yan K., Yang Y., Cao J., Yuan Y., Wang N., Kee K., Lu Z.J., Xi Q. // Nat. Commun. 2022. V. 13. P. 3984. https://doi.org/10.1038/s41467-022-31762-x
  64. Feng S., Sekine S., Pessino V., Li H., Leonetti M.D., Huang B. // Nat. Commun. 2017. V. 8. P. 370. https://doi.org/10.1038/s41467-017-00494-8
  65. Young D.D., Schultz P.G. // ACS Chem. Biol. 2018. V. 13. P. 854–870. https://doi.org/10.1021/acschembio.7b00974
  66. Koh M., Ahmad I., Ko Y., Zhang Y., Martinez T.F., Diedrich J.K., Chu Q., Moresco J.J., Erb M.A., Saghatelian A., Schultz P.G., Bollong M.J. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. P. e2021943118. https://doi.org/10.1073/pnas.2021943118
  67. Lafranchi L., Schlesinger D., Kimler K.J., Elsässer S.J. // J. Am. Chem. Soc. 2020. V. 142. P. 20080–20087. https://doi.org/10.1021/jacs.0c09574
  68. Richards A.L., Eckhardt M., Krogan N.J. // Mol. Syst. Biol. 2021. V. 17. P. e8792. https://doi.org/10.15252/msb.20188792
  69. Bosch J.A., Chen C.-L., Perrimon N. // Wiley Interdiscip. Rev. Dev. Biol. 2021. V. 10. P. e392. https://doi.org/10.1002/wdev.392
  70. Hung V., Zou P., Rhee H.-W., Udeshi N.D., Cracan V., Svinkina T., Carr S.A., Mootha V.K., Ting A.Y. // Mol. Cell. 2014. V. 55. P. 332–341. https://doi.org/10.1016/j.molcel.2014.06.003
  71. Rhee H.-W., Zou P., Udeshi N.D., Martell J.D., Mootha V.K., Carr S.A., Ting A.Y. // Science. 2013. V. 339. P. 1328–1331. https://doi.org/10.1126/science.1230593
  72. Trinkle-Mulcahy L. // F1000Res. 2019. V. 8. P. F1000 Faculty Rev-135. https://doi.org/10.12688/f1000research.16903.1
  73. Hopkins C., Gibson A., Stinchcombe J., Futter C. // Methods Enzymol. 2000. V. 327. P. 35–45. https://doi.org/10.1016/s0076-6879(00)27265-0
  74. Chu Q., Martinez T.F., Novak S.W., Donaldson C.J., Tan D., Vaughan J.M., Chang T., Diedrich J.K., Andrade L., Kim A., Zhang T., Manor U., Saghatelian A. // Nat. Commun. 2019. V. 10. P. 4883. https://doi.org/10.1038/s41467-019-12816-z
  75. Chu Q., Rathore A., Diedrich J.K., Donaldson C.J., Yates J.R., 3rd, Saghatelian A. // Biochemistry. 2017. V. 56. P. 3299–3306. https://doi.org/10.1021/acs.biochem.7b00265
  76. Rathore A., Chu Q., Tan D., Martinez T.F., Donaldson C.J., Diedrich J.K., Yates J.R., 3rd, Saghatelian A. // Biochemistry. 2018. V. 57. P. 5564–5575. https://doi.org/10.1021/acs.biochem.8b00726
  77. Zhang Q., Vashisht A.A., O’Rourke J., Corbel S.Y., Moran R., Romero A., Miraglia L., Zhang J., Durrant E., Schmedt C., Sampath S.C., Sampath S.C. // Nat. Commun. 2017. V. 8. P. 15664. https://doi.org/10.1038/ncomms15664
  78. Boix O., Martinez M., Vidal S., Giménez-Alejandre M., Palenzuela L., Lorenzo-Sanz L., Quevedo L., Moscoso O., Ruiz-Orera J., Ximénez-Embún P., Ciriaco N., Nuciforo P., Stephan-Otto Attolini C., Albà M.M., Muñoz J., Tian T.V., Varela I., Vivancos A., Ramón Y Cajal S., Muñoz P., Rivas C., Abad M. // Nat. Commun. 2022. V. 13. P. 6840. https://doi.org/10.1038/s41467-022-34529-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (289KB)
3.

Download (309KB)
4.

Download (331KB)
5.

Download (324KB)

Copyright (c) 2023 И.А. Седлов, И.А. Фесенко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies