Fluorescence Decay Analysis of the Model Compounds as an Approach to Photophysical Engineering of Fluorescent Proteins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Studying of structure-function relationships between a chromophore and its protein environment plays a key role in photophysical engineering of fluorescent proteins (FPs), specifically, in the guided designing of their new variants with a higher fluorescence quantum yield (FQY). Known approaches to FQY increasing mostly rely on suppression of the excited state nonradiative processes, but no tools have been suggested for the tuning of the radiative rate constant (kr), which is also a potentially “adjustable” value. Here, we propose an experimental approach in which the synthetic chromophore of FP models the “fixation” of the most important radiationless constants and allows monitoring of the fluorescence lifetime flexibility (as an indicator of the kr value). As a proof-of-concept, we studied the time-resolved fluorescence behavior of the green and blue FP chromophore analogs in diverse chemical environments. The conformationally locked analog of the GFP chromophore in most cases showed monophasic fluorescence decay kinetics with a lifetime of 2.7–3.0 ns, thus adequately modeling the typical behavior of GFPs with the highest FQYs. Under the conditions of stimulated ionization of this chromophore, we observed increased (up to 4.3–4.6 ns) fluorescence lifetimes, which can be interpreted in terms of an increase in the radiative constant (kr). The conformationally locked analog of the Sirius chromophore showed biexponential fluorescence decay kinetics, partly simulating the properties of the blue FPs. In an acetic acid solution, this compound exhibited distinct fluorescent properties (elevated fluorescence intensity with a major lifetime population of ~4 ns), which can be interpreted as the emission of an unusual cationic form of the chromophore.

About the authors

N. S. Baleeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: noobissat@ya.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

M. S. Baranov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Pirogov Russian National Research Medical University

Email: noobissat@ya.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10; Russia, 117997, Moscow, ul. Ostrovitianova 1

A. M. Bogdanov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Author for correspondence.
Email: noobissat@ya.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

References

  1. Chudakov D.M., Matz M.V., Lukyanov S., Lukyanov K.A. // Physiol. Rev. 2010. V. 90. P. 1103–1163. https://doi.org/10.1152/physrev.00038.2009
  2. Lukyanov K.A. // Biochem. Biophys. Res. Commun. 2022. V. 633. P. 29–32. https://doi.org/10.1016/j.bbrc.2022.08.089
  3. Zimmer M. // Chem. Rev. 2002. V. 102. P. 759–781. https://doi.org/10.1021/cr010142r
  4. Maddalo S.L., Zimmer M. // Photochem. Photobiol. 2006. V. 82. P. 367–372. https://doi.org/10.1562/2005-04-11-RA-485
  5. Mukherjee S., Jimenez R. // J. Phys. Chem. B. 2022. V. 126. P. 735–750. https://doi.org/10.1021/acs.jpcb.1c05629
  6. Dong J., Solntsev K.M., Poizat O., Tolbert L.M. // J. Am. Chem. Soc. 2007. V. 129. P. 10084–10085. https://doi.org/10.1021/ja073622u
  7. Wu L., Burgess K. // J. Am. Chem. Soc. 2008. V. 130. P. 4089–4096. https://doi.org/10.1021/ja710388h
  8. Drobizhev M., Callis P.R., Nifosì R., Wicks G., Stoltzfus C., Barnett L., Hughes T.E., Sullivan P., Rebane A. // Sci. Rep. 2015. V. 5. P. 13223. https://doi.org/10.1038/srep13223
  9. Lin C.-Y., Romei M.G., Oltrogge L.M., Mathews I.I., Boxer S.G. // J. Am. Chem. Soc. 2019. V. 141. P. 15250–15265. https://doi.org/10.1021/jacs.9b07152
  10. Lin C.-Y., Boxer S.G. // J. Am. Chem. Soc. 2020. V. 142. P. 11032–11041. https://doi.org/10.1021/jacs.0c02796
  11. Bajar B.T., Wang E.S., Lam A.J., Kim B.B., Jacobs C.L., Howe E.S., Davidson M.W., Lin M.Z., Chu J. // Sci. Rep. 2016. V. 6. P. 20889. https://doi.org/10.1038/srep20889
  12. Duwé S., Dedecker P. // Curr. Opin. Biotechnol. 2019. V. 58. P. 183–191. https://doi.org/10.1016/j.copbio.2019.04.006
  13. Olsen S., Smith S.C. // J. Am. Chem. Soc. 2007. V. 129. P. 2054–2065. https://doi.org/10.1021/ja066430s
  14. Faraji S., Krylov A.I. // J. Phys. Chem. B. 2015. V. 119. P. 13052–13062. https://doi.org/10.1021/acs.jpcb.5b07724
  15. Park J.W., Rhee Y.M. // J. Am. Chem. Soc. 2016. V. 138. P. 13619–13629. https://doi.org/10.1021/jacs.6b06833
  16. Simine L., Lammert H., Sun L., Onuchic J.N., Rossky P.J. // J. Am. Chem. Soc. 2018. V. 140. P. 1203–1206. https://doi.org/10.1021/jacs.7b10851
  17. Goedhart J., von Stetten D., Noirclerc-Savoye M., Lelimousin M., Joosen L., Hink M.A., van Weeren L., Gadella T.W.J., Jr., Royant A. // Nat. Commun. 2012. V. 3. P. 751. https://doi.org/10.1038/ncomms1738
  18. Bourgeois D. // Int. J. Mol. Sci. 2017. V. 18. P. 1187. https://doi.org/10.3390/ijms18061187
  19. Prangsma J.C., Molenaar R., van Weeren L., Bindels D.S., Haarbosch L., Stouthamer J., Gadella T.W.J.J., Subramaniam V., Vos W.L., Blum C. // J. Phys. Chem. B. 2020. V. 124. P. 1383–1391. https://doi.org/10.1021/acs.jpcb.9b10396
  20. Manna P., Hung S.-T., Mukherjee S., Friis P., Simpson D.M., Lo M.N., Palmer A.E., Jimenez R. // Integr. Biol. (Camb.). 2018. V. 10. P. 516–526. https://doi.org/10.1039/c8ib00103k
  21. Mukherjee S., Manna P., Hung S.-T., Vietmeyer F., Friis P., Palmer A.E., Jimenez R. // J. Phys. Chem. B. 2022. V. 126. P. 4659–4668. https://doi.org/10.1021/acs.jpcb.2c01956
  22. Yan W., Zhang L., Xie D., Zeng J. // J. Phys. Chem. B. 2007. V. 111. P. 14055–14063. https://doi.org/10.1021/jp0756202
  23. Baranov M.S., Lukyanov K.A., Borissova A.O., Shamir J., Kosenkov D., Slipchenko L.V., Tolbert L.M., Yampolsky I.V., Solntsev K.M. // J. Am. Chem. Soc. 2012. V. 134. P. 6025–6032. https://doi.org/10.1021/ja3010144
  24. Mo G.C.H., Posner C., Rodriguez E.A., Sun T., Zhang J. // Nat. Commun. 2020. V. 11. P. 1848. https://doi.org/10.1038/s41467-020-15687-x
  25. Conyard J., Heisler I.A., Chan Y., Bulman Page P.C., Meech S.R., Blancafort L. // Chem. Sci. 2018. V. 9. P. 1803–1812. https://doi.org/10.1039/c7sc04091a
  26. Mamontova A.V., Solovyev I.D., Savitsky A.P., Shakhov A.M., Lukyanov K.A., Bogdanov A.M. // Sci. Rep. 2018. V. 8. P. 13224. https://doi.org/10.1038/s41598-018-31687-w
  27. Sen T., Mamontova A.V., Titelmayer A.V., Shakhov A.M., Astafiev A.A., Acharya A., Lukyanov K.A., Krylov A.I., Bogdanov A.M. // Int. J. Mol. Sci. 2019. V. 20. P. 5229. https://doi.org/10.3390/ijms20205229
  28. Mamontova A.V., Shakhov A.M., Lukyanov K.A., Bogdanov A.M. // Biomolecules. 2020. V. 10. P. 1547. https://doi.org/10.3390/biom10111547
  29. Bindels D.S., Haarbosch L., van Weeren L., Postma M., Wiese K.E., Mastop M., Aumonier S., Gotthard G., Royant A., Hink M.A., Gadella T.W.J., Jr. // Nat. Methods. 2017. V. 14. P. 53–56. https://doi.org/10.1038/nmeth.4074
  30. Bindels D.S., Postma M., Haarbosch L., van Weeren L., Gadella T.W.J., Jr. // Nat. Protoc. 2020. V. 15. P. 450–478. https://doi.org/10.1038/s41596-019-0250-7
  31. Mukherjee S., Hung S.-T., Douglas N., Manna P., Thomas C., Ekrem A., Palmer A.E., Jimenez R. // Biochemistry. 2020. V. 59. P. 3669–3682. https://doi.org/10.1021/acs.biochem.0c00484
  32. Heim R., Cubitt A.B., Tsien R.Y. // Nature. 1995. V. 373. P. 663–664. https://doi.org/10.1038/373663b0
  33. Ormö M., Cubitt A.B., Kallio K., Gross L.A., Tsien R.Y., Remington S.J. // Science. 1996. V. 273. P. 1392–1395. https://doi.org/10.1126/science.273.5280.1392
  34. Tomosugi W., Matsuda T., Tani T., Nemoto T., Kotera I., Saito K., Horikawa K., Nagai T. // Nat. Methods. 2009. V. 6. P. 351–353. https://doi.org/10.1038/nmeth.1317
  35. Baleeva N.S., Tsarkova A.S., Baranov M.S. // Tet. Lett. 2016. V. 57. P. 3043–3045. https://doi.org/10.1016/j.tetlet.2016.06.006
  36. Богданов А.М., Горбачев Д.А., Зайцева Э.Р., Смирнов А.Ю., Балеева Н.С. // Биоорг. химия. 2021. Т. 47. С. 413–416. [Bogdanov A.M., Gorbachev D.A., Zaitseva E.R., Smirnov A.Y., Baleeva N.S., Baranov M.S. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 784–787.] https://doi.org/10.31857/S0132342321030040
  37. Borst J.W., Hink M.A., van Hoek A., Visser A.J.W.G. // J. Fluoresc. 2005. V. 15. P. 153–160. https://doi.org/10.1007/s10895-005-2523-5
  38. van Manen H.-J., Verkuijlen P., Wittendorp P., Subramaniam V., van den Berg T.K., Roos D., Otto C. // Biophys. J. 2008. V. 94. P. L67–L69. https://doi.org/10.1529/biophysj.107.127837
  39. Suhling K., Siegel J., Phillips D., French P.M.W., Lévêque-Fort S., Webb S.E.D., Davis D.M. // Biophys. J. 2002. V. 83. P. 3589–3595. https://doi.org/10.1016/S0006-3495(02)75359-9
  40. Strickler S.J., Berg R.A. // J. Chem. Phys. 1962. V. 37. P. 814–822. https://doi.org/10.1063/1.1733166
  41. Seifert M.H.J., Ksiazek D., Azim M.K., Smialowski P., Budisa N., Holak T.A. // J. Am. Chem. Soc. 2002. V. 124. P. 7932–7942. https://doi.org/10.1021/ja0257725
  42. Liu C.C., Schultz P.G. // Annu. Rev. Biochem. 2010. V. 79. P. 413–444. https://doi.org/10.1146/annurev.biochem.052308.105824
  43. Lambert T.J. // Nat. Methods. 2019. V. 16. P. 277–278. https://doi.org/10.1038/s41592-019-0352-8
  44. Lam A.J., St-Pierre F., Gong Y., Marshall J.D., Cranfill P.J., Baird M.A., McKeown M.R., Wiedenmann J., Davidson M.W., Schnitzer M.J., Tsien R.Y., Lin M.Z. // Nat. Methods. 2012. V. 9. P. 1005–1012. https://doi.org/10.1038/nmeth.2171
  45. Shaner N.C., Lambert G.G., Chammas A., Ni Y., Cranfill P.J., Baird M.A., Sell B.R., Allen J.R., Day R.N., Israelsson M., Davidson M.W., Wang J. // Nat. Methods. 2013. V. 10. P. 407–409. https://doi.org/10.1038/nmeth.2413
  46. Yandell M.A., King S.B., Neumark D.M. // J. Chem. Phys. 2014. V. 140. P. 184317. https://doi.org/10.1063/1.4875021
  47. Chattoraj M., King B.A., Bublitz G.U., Boxer S.G. // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 8362–8367. https://doi.org/10.1073/pnas.93.16.8362
  48. Subach O.M., Gundorov I.S., Yoshimura M., Subach F.V., Zhang J., Grüenwald D., Souslova E.A., Chudakov D.M., Verkhusha V.V. // Chem. Biol. 2008. V. 15. P. 1116–1124. https://doi.org/10.1016/j.chembiol.2008.08.006
  49. Grigorenko B.L., Polyakov I.V., Savitsky A.P., Nemukhin A.V. // J. Phys. Chem B. 2013. V. 117. P. 7228–7234. https://doi.org/10.1021/jp402149q
  50. Yang L., Nian S., Zhang G., Sharman E., Miao H., Zhang X., Chen X., Luo Y., Jiang J. // Sci. Rep. 2019. V. 9. P. 11640. https://doi.org/10.1038/s41598-019-47660-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (51KB)

Copyright (c) 2023 Н.С. Балеева, М.С. Баранов, А.М. Богданов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies