The Correlation of β-Adrenoreactivity of Erythrocyte Membranes with Clinical and Laboratory Parameters in Patients with Resistant Hypertension in the Presence and Absence of Type 2 Diabetes Mellitus

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The peculiarity of the conjugation of β-adrenoreactivity of membranes (β-ARM) erythrocyte, as an indicator of the state of autonomic regulation of the cardiovascular system, with other clinical and laboratory indicators in drug-resistant arterial hypertension (RAH) with the absence and presence of type 2 diabetes mellitus (DM2) was investigated. It was shown that patients with RAH, regardless of the presence of DM2, were characterized by reduced adrenoreactivity, while the beta-ARM index of erythrocytes was more than 2 times higher than the reference values. The intergroup difference in the mean values of beta-ARM erythrocytes and the frequency of cases of exceeding the established reference values by this indicator did not have significant differences. In RAH, regardless of the presence of DM2, the beta-ARM erythrocytes index of erythrocytes is statistically significantly associated with the variability of blood pressure, the volume of daily diuresis and increased contractile capacity of the left ventricle. In addition, in the presence of DM2, the association of β-ARM erythrocyte with an increase in left ventricular elastance, heart rate variability, duration of arterial hypertension and DM2 was revealed. Thus, with the development of RAH in humans, the β-ARM erythrocyte indicator can be a new biomarker for personalized assessment of the activity of autonomic regulation of the cardiovascular system. CD2 expands the conjugacy of β-ARM erythrocyte with clinical and laboratory parameters.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Afanasiev

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Хат алмасуға жауапты Автор.
Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

M. Manukyan

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

T. Rebrova

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

I. Zyubanova

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

E. Muslimova

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

E. Solonskaya

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

V. Korepanov

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

V. Lichikaki

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

D. Kondratieva

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

V. Mordovin

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

A. Falkovskaya

Tomsk National Research Medical Center, RAS, Cardiology Research Institute

Email: Tursky@cardio-tomsk.ru
Ресей, Tomsk

Әдебиет тізімі

  1. Konradi A.O. [Autonomic nervous system in arterial hypertension and heart failure: current understanding of its pathophysiologic role and innovative treatment approaches] // Russ. J. Cardiol. 2013. V. 102. № 4. P. 52.
  2. Konradi A.O. [Interrelation between sympathetic and renin-angiotensin systems: role in arterial hypertension] // Arterial’naya Gipertenziya. 2012. V. 18. № 6. P. 577.
  3. Gavras I., Manolis A., Gavras C. The paradigm of suppression of the sympathetic system in chronic heart failure // Int. Med. J. 2000. № 3. P. 213.
  4. Mitoff P.R., Gam D., Ivanov J. et al. Cardiac-specific sympathetic activation in men and women with and without heart failure // Heart. 2011. V. 97. № 5. Р. 382.
  5. Law M., Morris J., Wald N. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies // BMJ. 2009. V. 338. P. b1665.
  6. Bernotiene G., Dulskiene V., Klumbiene J. et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants // Lancet. 2021. V. 398. № 10304. P. 957.
  7. Boytsov S.A., Drapkina O.M., Shlyakhto E.V. et al. [Epidemiology of Cardiovascular Diseases and their Risk Factors in Regions of Russian Federation (ESSERF) study. Ten years later] // Cardiovasc. Ther. Prev. 2021. V. 20. № 5. P. 3007.
  8. Kontsevaya A.V., Mukaneeva D.K., Myrzamatova A.O. et al. [Economic damage of risk factors associated with morbidity and mortality from major chronic non-communicable diseases in Russia in 2016] // Cardiovasc. Ther. Prev. 2020. V. 19. № 1. P. 2396.
  9. Hu G., Jousilahti P., Tuomilehto J. Joint effects of history of hypertension at baseline and Type 2 diabetes at baseline and during follow-up on the risk of coronary heart disease // Eur. Heart J. 2007. V. 28. № 24. P. 3059.
  10. Wang Z., Yan T., Fu H. Prevalence of diabetes and hypertension and their interaction effects on cardio-cerebrovascular diseases: a cross-sectional study // BMC Public Health. 2021. V. 21. № 1. P. 1224.
  11. Huggett R.J., Scott E.M., Gilbey S.G. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension // Circulation. 2003. V. 108. № 25. P. 3097.
  12. Rebrova T.Yu., Ripp T.M., Afanasiev S.A. et al. [Possibility of evaluating the effectiveness of renal artery sympathetic denervation in resistant hypertension early after radiofrequency ablation] // Ter. Arkh. 2016. V. 88. № 8. P. 10.
  13. Ripp T.M., Rebrova T.Yu., Mordovin V.F. et al. [Criteria for selecting patients with resistant hypertension for a renal sympathetic denervation] // Ter. Arkh. 2016. V. 88. № 8. P. 14.
  14. Kobalava Z.D., Konradi A.O., Nedogoda S.V. et al. [Arterial hypertension in adults. Clinical guidelines 2020] // Russ. J. Cardiol. 2020. V. 25. № 3. P. 3786.
  15. Dedov I.I., Shestakova M.V., Mayorov A.Y. et al. [Algorithms of specialized medical care for patients with diabetes mellitus] // Diabetes Mellitus. 2019. 9th edition. V. 22. № 1S1. P. 1.
  16. Chen C.-H., Fetics B., Nevo E. et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans // J. Am. Coll. Cardiol. 2001. V. 38. № 7. P. 2028.
  17. Heart rate variability: standards of measurement, physiological interpretation and clinical use / Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology // Circulation. 1996. V. 93. № 5. P. 1043.
  18. Stryuk R.I., Dlusskaya I.G. [Adrenoreactivity and the cardiovascular system]. M.: Medicine, 2003. 160 с.
  19. Leon B.M., Maddox T.M. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research // World J. Diabetes. 2015. V. 6. № 13. Р. 1246.
  20. Huggett R.J., Scott E.M., Gilbey S.G. et al. Impact of Type 2 Diabetes Mellitus on Sympathetic Neural Mechanisms in Hypertension // Circulation. 2003. V. 108. № 25. P. 3097.
  21. Marar T. Amelioration of glucose induced hemolysis of human erythrocytes by vitamin E // Chem. Biol. Interact. 2011. V. 193. № 2. P. 149.
  22. Viskupicova J., Blaskovic D., Galiniak S. et al. Effect of high glucose concentrations on human erythrocytes in vitro // Redox Biol. 2015. V. 5. P. 381.
  23. Kochetkov A.I., Ostroumova O.D., Borisova E.V., Piksina G.F. [Mechanisms for the Development of Blood Pressure Variability and the Potential of Antihypertensive Drugs in Their Correction] // Kardiologiia. 2019. V. 59. № 11. P. 56.
  24. Di Bona G.F. Physiology in perspective: The wisdom of the body. Neural control of the kidney // J. Physiol. Regul. Integr. Comp. Physiol. 2005. V. 289. № 3. Р. R633.
  25. Vorobyova D.A., Rebrova T.Yu., Afanasyev S.A., Ryabov V.V. [Comparative analysis of adrenergic reactivity of erythrocytes in patients with myocardial infarction depending on the severity of coronary obstruction] // Russ. J. Cardiol. 2020. V. 25. № 5. P. 37.
  26. Borisova E.V., Afanasyev S.A., Rebrova T.Yu. et al. [A change in adrenal responsiveness in sotalol-treated patients with paroxysmal atrial fibrillation depending on autonomic nervous system tone] // Ter. Arkh. 2016. № 1. P. 35.
  27. Svarovskaya A.V., Garganeeva A.A. [Diabetes mellitus and heart failure — a modern look at the mechanisms of development] // Diabetes Mellitus. 2022. V. 25. № 3. P. 267.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Values of the β-ARM index of erythrocytes in patients with resistant arterial hypertension, depending on the absence or presence of type 2 diabetes mellitus. On the ordinate axis — the value of the β-ARM index in standard units; on the abscissa axis - groups of patients (RAH — resistant hypertension, DM2 - type 2 diabetes mellitus).

Жүктеу (85KB)
3. Fig. 2. The frequency of increased beta-ARM erythrocytes in patients with resistant arterial hypertension, depending on the presence or absence of diabetes. On the ordinate axis — the number of patients (in %) corresponding to and exceeding the threshold values of the β-ARM index of erythrocytes; on the abscissa axis - groups of patients (RAH— resistant hypertension, DM2 is type 2 diabetes mellitus).

Жүктеу (117KB)
4. Fig. 3. Correlations of beta-ARM erythrocytes with clinical and laboratory-instrumental data in patients with resistant arterial hypertension (RAH) in the absence (A) and presence of type 2 diabetes mellitus (DM2) (B). a — with the variability of average daily blood pressure; b — with the volume of daily urine; b — with the ejection fraction of the left ventricle ; g - with the index of arterial—left ventricular elastance.

Жүктеу (669KB)
5. Fig. 4. Additional correlation relationship of the erythrocyte β-ARM index with clinical and laboratory parameters in the combined development of resistant hypertension and type 2 diabetes mellitus. a — with the duration of arterial hypertension; b — with the values of the low-frequency component (LF) of the heart rate variability spectrum (HRV); c — with the values of the high-frequency component (HF) of the HRV spectrum; d — with the duration of DM2; d — with the level of glycated hemoglobin.

Жүктеу (776KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>