Terahertz Detection and Evaluation of Thermal Barrier Coating Thickness
- Authors: Han B.1, Li J.2, He Q.2, Zhang Z.1,3, Zhao Y.1, Wang H.1
-
Affiliations:
- Beijing Institute of Technology
- Institute of Surface Engineering Technology of the Chinese Academy of Agricultural Mechanization
- Capital Normal University
- Issue: No 3 (2025)
- Pages: 68-78
- Section: Thermal methods
- URL: https://journals.rcsi.science/0130-3082/article/view/284932
- DOI: https://doi.org/10.31857/S0130308225030062
- ID: 284932
Cite item
Abstract
Thermal barrier coatings are mainly used for thermal protection of turbine blades, and accurate non-destructive measurement of their thickness is a key factor in evaluating the integrity of blade quality. This article uses a reflective terahertz time-domain spectroscopy system to measure the thickness of thermal barrier coating samples, obtaining the refractive index of several thermal barrier ceramic coating material samples under different preparation conditions in the terahertz frequency band. Then, the reflective terahertz measurement system is used to obtain the time-domain signals of thermal barrier ceramic coating samples under different preparation conditions, extract different time-domain features, calculate the coating thickness, and compare them. The phenomenon of waveform broadening caused by dispersion during the transmission of terahertz waves in different samples was studied, and the impact of waveform broadening on the measurement of thermal barrier coating thickness was qualitatively analyzed. Compared with the results of metallographic thickness measurement, the deviation of the results is within the error range, and the comparison results show good consistency. It also provides useful reference for using terahertz technology to detect the thickness of thermal barrier coatings on turbine blades and evaluate structural quality.
Full Text

About the authors
Bin Han
Beijing Institute of Technology
Email: yjzhao@bit.edu.cn
China, 5, South Street, Zhongguancun, Haidian District, Beijing, 100081
Jianchao Li
Institute of Surface Engineering Technology of the Chinese Academy of Agricultural Mechanization
Email: yjzhao@bit.edu.cn
China, 12, South Street, Zhongguancun, Haidian District, Beijing, 100083
Qing He
Institute of Surface Engineering Technology of the Chinese Academy of Agricultural Mechanization
Email: yjzhao@bit.edu.cn
China, 12, South Street, Zhongguancun, Haidian District, Beijing, 100083
Zhenwei Zhang
Beijing Institute of Technology; Capital Normal University
Email: yjzhao@bit.edu.cn
China, 5, South Street, Zhongguancun, Haidian District, Beijing, 100081; 105, West Road, North 3rd Ring Road, Haidian District, Beijing, 100048
Yuejin Zhao
Beijing Institute of Technology
Author for correspondence.
Email: yjzhao@bit.edu.cn
China, 5, South Street, Zhongguancun, Haidian District, Beijing, 100081
Huiying Wang
Beijing Institute of Technology
Email: wanghuiying@bit.edu.cn
China, 5, South Street, Zhongguancun, Haidian District, Beijing, 100081
References
- Darolia R. et al. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects // International materials reviews. 2013. V. 58. No. 6. P. 315—348.
- David R.C., Simon R.P. et al. Thermal barrier coating materials // Materials Today. 2005. V. 8. No. 6. P. 22—29.
- Yong L., Chen Z., Mao Y. et al. Quantitative evaluation of thermal barrier coating based on eddy current technique // NDT and E international. 2012. V. 50. P. 29—35.
- Zhang D., Yu Y., Lai C. et al. Thickness measurement of multi-layer conductive coatings using multi-frequency eddy current techniques // Nondestructive testing and evaluation. 2016. V. 31. No. 3. P. 191—208.
- Chen H.L.R., Zhang B., Alvin M.A. et al. Ultrasonic detection of delamination and material characterization of thermal barrier coatings // Journal of thermal spray technology. 2012. V. 21. No. 6. P. 1184—1194.
- Ma Z., Zhao Y., Luo Z. et al. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum // Ultrasonics. 2014. V. 54. No. 4. P. 1005—1009.
- Zhao Y., Chen J., Zhang Z. Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique // Optical engineering. 2015. V. 54. No. 9. P. 094—104.
- David R.C., Simon R.P. Thermal barrier coating materials // Materials Today. 2005. V. 8. No. 6. P. 22—29.
- Stoik C., Bohn M., Blackshire J. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy // Optics Exp. 2008. V. 16. No. 21. P. 17039—17051.
- Su K., Shen Y.C., Zeitler J.A. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity // IEEE Transactions on Terahertz Science & Technology. 2014. V. 4. No. 4. P. 432—439.
- Krimi S., Klier J., Jonuscheit J. et al. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology // Applied Physics Letters. 2016. V. 109. P. 021105.
- Xiao L.W., Xie J.H., Song K. et al. Experimental Study on Thermal Barrier Coating Thickness Measurement of Key Component of Aero-enigine Based on Eddy-current Method // Failure Analysis and Prevention. 2020. V. 15. No. 2. P. 101—108.
- Garcia-Martin J., Gómez-Gil J., Vázquez-Sánchez E. Non-Destructive Techniques Based on Eddy Current Testing // Sensors. 2011. V. 11. No. 2. P. 2525—2565.
- Zhang H., Xu L.K., Hou W.T. et al. Determination of Thickness of Ti/IrO_2-Ta_2O_5 Oxide Anode Coating by X-Ray Fluorescence // Journal of Materials Protection. 2010. V. 43. No. 2. P. 67—69.
- Jain S.K., Gupta P.P., Eapen A.C. An X-Ray Fluorescence Method for Coating Thickness Measurement // X-Ray Spectrometry. 1979. V. 8. No. 1. P. 11—13.
- White J., Fichter G., Chernovsky A. et al. Time domain terahertz non-destructive evaluation of aeroturbine blade thermal barrier coatings. Review of quantitative nondestructive evaluation // American Institute of Physics. 2009. V. 28.
- Fukuchi T., Fuse N. et al. Measurement of topcoat thickness of thermal barrier coating for gas turbines using terahertz waves // IEEJ Trans Fundam Mat. 2012. V. 132. P. 166—172.
- Fukuchi T., Fuse N. et al. Measurement of refractive index and thickness of topcoat of thermal barrier coating by reflection measurement of terahertzwaves // IEEJ Trans Fund Mater. 2012. V. 132. No. 9. P. 702—708.
- Fukuchi T., Fuse N., Okada M. et al. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave // Electrical engineering in Japan. 2014. V. 189. No. 1. P. 1—8.
- Krimi S., Klier J. et al. Self-Calibrating Approach for Terahertz Thickness Measurements of Ceramic Coatings. 2016.
- Ye D.D., Wang W.Z., Huang J.B., Lu X. et al. Nondestructive interface morphology characterization of thermal barrier coatings using terahertz time-domain spectroscopy // Coatings. 2019. V. 9. No. 2. P. 89.
- Cao B.H., Wang M.Y., Li X.H. et al. Noncontact Thickness Measurement of Multilayer Coatings on Metallic Substrate Using Pulsed Terahertz Technology // IEEE Sensors Journal. 2020. V. 20. No. 6. P. 3162—3171.
- Watanabe M., Kuroda S., Yamawaki H., Shiwa M. Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings // Surf. Coat. Technol. 2011. V. 205. No. 19. P. 4620—4626.
- Ye D.D., Wang W., Zhou H.T. et al. In-situ evaluation of porosity in thermal barrier coatings based on the broadening of terahertz time domain pulses: simulation and experimental investigations // Opt. Express. 2019. V. 27. P. 28150—28165.
- Ye D.D., Wang W.Z., Zhou H. et al. Nondestructive Evaluation of Thermal Barrier Coatings Interface Delamination Using Terahertz Technique Combined with SWT-PCA-GA-BP Algorithm // Coatings. 2020. V. 10. No. 9. P. 859.
- Chen C.C., Lee D.J., Pollock T. et al. Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings // Optics express. 2010. V. 18. No. 4. P. 3477—3486.
- Dong J., Locquet A., Citrin D.S. Terahertz Quantitative Nondestructive Evaluation of Failure Modes in Polymer-Coated Steel // IEEE Journal of Selected Topics in Quantum Electronics. 2017. V. 23. No. 4. P. 1—7.
- Dorney T.D., Baraniuk R.G., Mittleman D.M. Material parameter estimation with terahertz timedomain spectroscopy // Journal of the Optical Society of America (Optics Image Science and Vision). 2001. V. 18. No. 7. P. 1562—1571.
- Zhang Z.W., Jia R., Xu J. et al. Quasi-optical measurement and complex refractive index extraction of flat plate materials using single time-domain transmission model in Y-Band // IEEE Transactions on Microwave Theory and Techniques. 2022. V. 70. No. 11. P. 5224—5233.
Supplementary files
