Experimental study of ultrasonic wave propagation in a long waveguide sensor for fluid-level sensing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work reports an ultrasonic long waveguide sensor for measuring the fluid level utilizing longitudinal L(0,1), torsional T(0,1), and flexural F(1,1) wave modes. These wave modes were transmitted and received simultaneously using stainless-steel wire. A long waveguide (>12 m) covers a broader region of interest and is suitable in the process industry's hostile environment applications, "fluid levels and temperature measurements." In this work, we used fluids "diesel, water, and glycerin" for measuring fluid levels based on the sensor's reflection factors from time domain and frequency domain signals. We examined the impact of wave modes' attenuation effects for long waveguide sensor design while changing the waveguide lengths. Initially, we obtained the L(0,1) and T(0,1) modes reflections from the 12.6 m waveguide length when one end of the long waveguide was fixed with a shear transducer at 45° orientation. Subsequently, we want to study and identify all wave modes'' (especially F mode) travel distances. Hence, we would like to investigate the guided wave propagation characteristics (attenuation, ultrasonic velocity, and frequency of all wave modes) in the long waveguide while cutting systematically at intervals of 1 meter, starting from its original length of the waveguide 12.6 meters by analyzing the A-scan signals of various lengths of a single waveguide. This simple and cost-effective technique can monitor the high fluid depths and temperature in power plants, oil, and petrochemical industries while designing a long waveguide sensor with appropriate ultrasonic parameters.

Full Text

Restricted Access

About the authors

Abhishek Kumar

National Institute of Technology

Author for correspondence.
Email: abhik@student.nitw.ac.in
India, 506004, Telangana

Suresh Periyannan

National Institute of Technology

Email: sureshp@nitw.ac.in
India, 506004, Telangana

References

  1. Cummings D.D., Wartmann G., Perdue K.L. Sensor apparatus for process measurement. U.S. Patent 5 661 251. Aug. 26. 1997.
  2. Grieger B.D., Cummings D.D. Sensor apparatus for process measurement. U.S. Patent 5 827 985. Oct. 27. 1998.
  3. Pelczarl C., Meiners M., Gould D., Lang W., Benecke W. Contactless liquid level sensing using wave damping phenomena in free-space / TRANSDUCERS 2007 — 2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France. 2007. P. 2353—2356. doi: 10.1109/SENSOR.2007.4300642
  4. Xiaowei D., Ruifeng Z. Detection of liquid-level variation using a side-polished fiber Bragg grating // Opt. Laser Technol. 2010. V. 42. P. 214—218.
  5. Peng G., He J., Yang S., Zhou W. Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells // Meas. J. Int. Meas. Confed. 2014. V. 58. P. 130—137.
  6. Ran Y., Xia L., Niu D., Wen Y., Yu C., Liu D. Design and demonstration of a liquid level fiber sensor based on self-imaging effect // Sensors Actuators. A Phys. 2016. V. 237. P. 41—46.
  7. Rogers S.C., Miller G.N. Level, temperature, and density sensor*. 1982.
  8. Lynnworth L.C. Ultrasonic Measurements for Process Control: Theory, Techniques, Applications. Acad. Press, 2013.
  9. Kim J.O. et al. Torsional Sensor Applications in Two-Phase Fluids // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1993. V. 40. P. 563—576.
  10. Spratt W.K., Vetelino J.F., Lynnworth L.C. Torsional Ultrasonic Waveguide Sensor / 2010 IEEE International Ultrasonics Symposium Proceedings. 978-1-4577-0381-2/10/$25.00 ©2010 IEEE.
  11. Balasubramaniam K., Periyannan S. A novel ultrasonic waveguide technique for distributed sensing and measurements of physical and chemical properties of surrounding media. US Patent No: US 10520370B2. 2019.
  12. Periyannan S., Rajagopal P., Balasubramaniam K. Torsional mode ultrasonic helical waveguide sensor for re-configurable temperature measurement // AIP Advances. 2016. No. 6. P. 065116.
  13. Periyannan S., Balasubramanian K. Multi-level temperature measurements using ultrasonic waveguides // Measurement. 2015. V. 61. P. 185—191.
  14. Periyannan S., Rajagopal P., Balasubramaniam K. Re-configurable Multi-Level Temperature Sensing by Ultrasonic Spring-like Helical Waveguide // J. App. Phy. 2016. V. 119. P. 144502.
  15. Rose J.L. Ultrasonic Waves in solid Media. Cambridge, UK: Cambridge University Press, 1999. P. 143—152.
  16. Periyannan S., Balasubramaniam K. Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method // Review of Scientific Instruments. 2015. V. 86. P. 114903.
  17. Periyannan S., Rajagopal P., Balasubramaniam K. Multiple Temperature Sensors Embedded in an Ultrasonic Spiral-like waveguide // AIP Advances. 2017. V. 7. P. 035201.
  18. Kumar A., Periyannan S. Helical waveguide sensor for fluid level sensing using L(0,1), T(0,1) and F(1,1) wave modes simultaneously // IEEE Sensors Journal. Jul. 2023. V. 23 (17). P. 19002—19011. doi: 10.1109/JSEN.2023.3296931
  19. Periyannan S., Rajagopal P., Balasubramanian K. Ultrasonic Bent Waveguides Approach for Distributed Temperature Measurement // Ultrasonics. 2017. V. 74. P. 211—220.
  20. Kumar A., Periyannan S. Enhancing the ultrasonic waveguide sensor’s fluid level sensitivity using through-transmission and pulse-echo techniques simultaneously // Review of scientific Instrumnents. 2023. V. 94 (6). P. 065007. https://doi.org/10.1063/5.0145684
  21. Raja N., Balasubramaniam K., Periyannan S. Ultrasonic waveguide based level measurement using flexural mode F(1,1) in addition to the fundamental modes // Rev. Sci. Instrum. 2019. V. 90. https://doi.org/10.1063/1.5054638
  22. Subhash N.N., Balasubramaniam K. Fluid level sensing using ultrasonic waveguides // Insight-Nondestructive and condition monitoring. 2014. V. 56 (6). P. 607—612. DOI: doi.org/10.184/insi.2014.56.11.607
  23. Huang S. et al. An Optimized Lightweight Ultrasonic Liquid Level Sensor Adapted to the Tilt of Liquid Level and Ripple // IEEE Sensors Journal. Jan.1. 2022. V. 22. No. 1. P. 121—129. doi: 10.1109/JSEN.2021.3127127
  24. Matsuya I., Honma Y., Mori M., Ihara I. Measuring Liquid-Level Utilizing Wedge Wave // Sensors. 2018. V. 18 (1). P. 2. https://doi.org/10.3390/s18010002
  25. Dhayalan R., Saravanan S., Manivannan S., Rao B.P.C. Development of ultrasonic waveguide sensor for liquid level measurement in loop system // Electronics Letters. 2020. V. 56 (21). P. 1120—1122.
  26. Rogers S.C., Miller G.N. Ultrasonic level, temperature, and density sensor // IEEE Trans. Nucl. Sci. Feb. 1982. V. 29. No. 1. P. 665—668.
  27. Kim J.O. et al. Torsional sensor applications in two-phase fluids // IEEE Trans. Ultrason., Ferroelectr., Freq. Control. Sep. 1993. V. 40. No. 5. P. 563—576.
  28. Li P., Cai Y., Shen X., Nabuzaale S., Yin J., Li J. An accurate detection for dynamic liquid level based on MIMO ultrasonic transducer array // IEEE Trans. Instrum. Meas. 2015. V. 64. P. 582—595.
  29. Zhang et al. A novel ultrasonic method for liquid level measurement based on the balance of echo energy // Sensors (Switzerland). 2017. V. 17. https://doi.org/10.3390/s17040706
  30. Chuprin V.A. Control of liquid media using ultrasonic normal waves. Moscow: Spectrum, 2015. 216 p. ISBN 978-5-4442-0101-5.
  31. Muravyev V.V., Muravyeva O.V. et al. Evaluation of Residual Stresses in Rims of Wagon Wheels Using the Electromagnetic-Acoustic Method // Russian Journal of Nondestructive Testing. 2011. V. 47. No. 8. P. 512—521.
  32. Muravyev V.V., Muravyeva O.V., Kokorina E.N. Quality Control of Heat Treatment of 60C2A Steel Bars Using the Electromagnetic-Acoustic Method // Russian Journal of Nondestructive Testing. 2013. V. 49. No. 1. P. 15—25.
  33. Murav’eva O.V., Murav’ev V.V., Myshkina A.V. The Influence of the Design Features of Antiphased Electromagnetic-Acoustic Transducers on the Formation of Directivity Characteristics // Russian Journal of Nondestructive Testing. 2014. V. 50. No. 9. P. 531—538.
  34. Rastegaev I.A., Merson D.L., Danyuk A.V., Afanas’ev M.A., Khrustalev A.K. Universal Waveguide for the Acoustic-Emission Evaluation of High-Temperature Industrial Objects // Russian Journal of Nondestructive Testing. 2018. V. 54. No. 3. P. 164—173.
  35. Balasubramaniam K., Periyannan S. Ultrasonic waveguide technique for distribute sensing and measurements of physical and chemical properties of surrounding media. US Patent 11 022 502. June 1. 2021.
  36. Pavlakovic B.N., Lowe M.J.S., Cawley P. Disperse: A general purpose program for creating dispersion curves // Quant. Non-Destructive Eval. 1997. V. 16. P. 185—192.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dispersion relation for stainless steel: phase velocity (a); group velocity (b)

Download (175KB)
3. Fig. 2. Orientation of the waveguide and transducer at 45° for propagation of modes F(1,1), T(0,1), and L(0,1) in the experiment and photo excitation of the modes

Download (337KB)
4. Fig. 3. Block diagram of the experimental setup (a): 1 - shear transducer; 2 - waveguide; 3 - generator-receiver; 4 - PicoScope; 5 - computer; 6 - controlled tank; 7 - controlled sample. Transducer holder (b); real experimental setup for liquid level measurement (c): transducer holder (1); shear transducer with waveguide at 45° (2); coupler (3); long waveguide (4); sample and controlled tube (5); generator/receiver (6); PicoScope (7); PC (8)

Download (1MB)
5. Fig. 4. Received A-scan signal (waveguide in air medium)

Download (151KB)
6. Fig. 5. Hilbert transform of the obtained A-scan signal and its enlarged image for glycerol (a) and diesel fuel (b)

Download (899KB)
7. Fig. 6. FFT for the obtained modes L(0, 1) (a), T(0, 1) (b) of the signals from glycerol

Download (514KB)
8. Fig. 7. FFT for the obtained modes L(0, 1) (a), T(0, 1) (b) of water signals

Download (513KB)
9. Fig. 8. Dependence of the reflection coefficient on the level of different liquids

Download (991KB)
10. Fig. 9. Error bounds for L(0,1), T(0,1) of the 1st pass and L(0,1) of the 2nd pass in water (a); diesel fuel (b); glycerol (c)

Download (1MB)
11. Fig. 10. Hilbert transform for the received A-scan signals at waveguide lengths of 12.6; 6.6; 3.4 and 1.7 m

Download (1MB)
12. Fig. 11. Changes in the amplitude of signals of wave modes L, T, F when changing the length of the waveguide

Download (853KB)
13. Fig. 12. Dependence of the signal frequency L(0, 1), T(0, 1), F(1, 1) on the waveguide length

Download (798KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies