Inspection of press joints based on the analysis of their deformation patterns under local thermal loading

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of experimental studies of the possibility of using strain gauges under local pulsed thermal loading to evaluate the tension of the press connections of bearing rings with shafts are presented. Samples of press joints with tightness in the range from 38 to 118 microns were made. As a result of the study of the patterns of heat flow propagation in bearing rings and tension samples by contact method and means of thermal imaging, the possibility of separating deformations associated with the influence of temperature on the deformation measurement area and the temperature gradient in the heating area is shown. The methods of inspecting the press joint when exposed to a heater ring with a heat power capacity of 80 kJ and a temperature of 200°C and measuring the deformations of the ring and shaft by an opto-polarizing sensor with a base of 60 mm and a resolution of 2×10 — 7 relative deformations have been experimentally implemented. A correlation has been established between the time of reaching the maximum of local deformations of the shaft with the tightness of the press joints and the sign of deformations of the bearing ring with the tightness of the press fit, the gap between the ring and the shaft.

全文:

受限制的访问

作者简介

S. Becher

Siberian transport university

Email: fedorinin55@mail.ru
俄罗斯联邦, 630049, Novosibirsk, str. Dusi Kovalchuk, 191

A. Popkov

Siberian transport university

Email: fedorinin55@mail.ru
俄罗斯联邦, 630049, Novosibirsk, str. Dusi Kovalchuk, 191

A. Vyplaven

Siberian transport university

Email: fedorinin55@mail.ru
俄罗斯联邦, 630049, Novosibirsk, str. Dusi Kovalchuk, 191

V. Fedorinin

Branch of IFP SB RAS “Design and Technological Institute of Applied Microelectronics”

编辑信件的主要联系方式.
Email: fedorinin55@mail.ru
俄罗斯联邦, 630090, Novosibirsk, ak. Lavrentieva ave., 2/1

V. Sidorov

Branch of IFP SB RAS “Design and Technological Institute of Applied Microelectronics”

Email: fedorinin55@mail.ru
俄罗斯联邦, 630090, Novosibirsk, ak. Lavrentieva ave., 2/1

S. Shlyakhtenkov

Siberian transport university

Email: shlyakhtenkow@gmail.com
俄罗斯联邦, 630049, Novosibirsk, str. Dusi Kovalchuk, 191

I. Kinzhagulov

ITMO National Research University

Email: fedorinin55@mail.ru
俄罗斯联邦, 197101, St. Petersburg, Kronverksky Prospekt, 49, litera A

参考

  1. Carpenter Chris. Fatigue Testing of Shrink-Fit Couplings for Joining High-Strength-Steel Riser Pipe // Journal of Petroleum Technology. 2015. V. 65. P. 108—111.
  2. Bezyazychnyj V.F., Fedulov V.M. The methodology of technological support of operational indicators in the assembly of joints with tension // Sborka v mashinostroenii, priborostroenii. 2020. № 6. P. 270—276.
  3. Hehe Kang, Zhi-Min Li, Tao Liu, Guang Zhao, Jianping Jing, Wei Yuan. A novel multiscale model for contact behavior analysis of rough surfaces with the statistical approach // International Journal of Mechanical Sciences. 2021. V. 212.
  4. Lior Kogu, Izhak Etsion. A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces // Tribology Transactions. 2003. V. 46. No. 3. P. 383—39.
  5. Kuliev S.A., Mamedov A.F. Determination of stresses in the connection hub with tension during loading // Vestnik mashinostroeniya. 2019. No. 7. P. 27—30.
  6. Rozhkova E.A., Chetverikov S.V. The method of conducting experimental studies of the stress-strain state of profile joints with tension // Vestnik Rossijskogo universiteta druzhby` narodov. Seriya: Inzhenerny`e issledovaniya. 2018. V. 19. No. 1. P. 46—58.
  7. Mamedov A.F. Calculation of the connection with tension to the shock load // Problemy` mashinostroeniya i avtomatizacii. 2019. No. 4. P. 85—87.
  8. Matlin M.M., Kazankin V.A., Kazankina E.N. Methods for improving the effectiveness of tightening control of threaded connections // Ximicheskoe i neftegazovoe mashinostroenie. 2020. № 7. P. 40—42.
  9. Boutoutaou H., Bouaziz M., Fontaine J.F. Modeling of interference fits taking form defects of the surfaces in contact into account // Materials & Design. 2011. V. 32. No. 7. P. 3692—3701.
  10. Wang X., Lou Z., Wang X., Wang Y., Hao X., Wang Z. Automatic press-fit assembly of small precision interference fitting parts: armature of electro-hydraulic servo valve // Assembly Automation. 2019. V. 39. No. 5. P. 986—998.
  11. Kupriyanov O., Trishch, R., Dichev D., Hrinchenko H. Experimental Studies on the Form Error Effect of the Part Mounting Surface on the Strength Quality Parameter of the Interference Fit Joints // Advanced Manufacturing Processes V. 2023. V. 10.
  12. Bedlaoui Allal, Boutoutaou Hamid. Effect of interference and form defect on the cohesion of the shrink-fit assembly // The International Journal of Advanced Manufacturing Technology. 2023. V. 128.
  13. Buketkin B.V., Semenov-Ezhov I.E., Shirshov A.A. Stress relaxation in bolted joints with radial tension // Inzhenerny`j zhurnal: nauka i innovacii. 2019. № 10 (94). P. 1.
  14. Arslan M.A. Coupled thermal/structural contact analyses of shrink-fit tool holder // Journal of Engineering Manufacture. 2014. V. 228 (5). P. 715—724.
  15. Wang X., Lou Z., Wang X., Hao X., Wang Y. Prediction of stress distribution in press-fit process of interference fit with a new theoretical model // Journal of Mechanical Engineering Science. 2019. V. 233(8). P. 2834—2846.
  16. Saeedi R., Sadeghi M. Investigation of insert-hole interference fit influence on downhole drilling bit failure // Journal of Engineering Manufacture. 2020. V. 234 (14). P. 1752—1761.
  17. Santus C. Initial orientation of the fretting fatigue cracks in shrink-fit connection specimens // Frattura ed Integrità Strutturale. 2019. V. 13 (48). P. 442—450.
  18. Saeed Muhammad, Falter Jan, Dausch Valesko, Wagner Markus, Kreimeyer Matthias, Eisenbart Boris. Artificial intelligence techniques for improving cylindrical shrink-fit shaft-hub couplings // Proceedings of the Design Society. 2023. V. 3. P. 645—656.
  19. Zhou D., Lan S., Gao X. et al. Nondestructive Surface Threshold Definition for Remanufacturing Disassembly of Interference Fit // Int. J. Precis. Eng. Manuf. 2018. V. 19. P. 1735—1743.
  20. Bo You, Zhifeng Lou, Yi Luo, Yang Xu, Xiaodong Wang. Prediction of Pressing Quality for Press-Fit Assembly Based on Press-Fit Curve and Maximum Press-Mounting Force // International Journal of Aerospace Engineering. 2015. V. 2015. P. 10.
  21. Matlin M.M., Kazankina E.N., Kazankin V.A., Mozgunova A.I. Device for determining pressure in connection with tension / // Izvestiya Volgogradskogo gosudarstvennogo texnicheskogo universiteta. 2018. No. 9 (219). P. 80—83.
  22. Yang Liu, Mingxuan Li, Xiaofeng Lu, Qingsheng Li, Xiaolei Zhu. Pull-out performance and optimization of a novel Interference-fit rivet for composite joints // Composite Structures. 2021. V. 269.
  23. Wang Xingyuan, Liu Jiaxing, Lu Shujie, Wang Yue, Wang Xiaodong, Lou Zhifeng, Zhang Lixun. Connection force measurement of precision small interference components using ultrasound // Journal of Mechanical Engineering Science. 2023.
  24. Muraveva O.V., Volkova L.V., Muravev V.V. Sensitivity of the electromagnetic-acoustic multiple shadow method using Rayleigh waves in the control of oil grade pipes // Defektoskopiya. 2020. No. 12. P. 48—57.
  25. Muravev V.V., Volkova L.V., Platunov A.V., Buldakova I.V., Gushhina L.V. Studies of the structural and stress-strain state of rails of current production by the method of acoustoelasticity // Vestnik IzhGTU imeni M.T. Kalashnikova. 2018. V. 21. No. 2. P. 13—23.
  26. Bekher S.A., Stepanova L.N., Ry`zhova A.O., Bobrov A.L. Control of bearing ring tension by surface waves using the acoustoelasticity effect // Defektoskopiya. 2021. No. 4. P. 13—21.
  27. Buinosov A.P., Vetlugina O.I., Guzenkova E.A. Development of an ultrasonic method for monitoring the tension of the bandage on the rim of the wheel center with the bandages attached // Nauka i obrazovanie transportu. 2022. No. 1. P. 13—15.
  28. Buldakova I.V., Volkova L.V., Muravev V.V. Stress distribution in pipe samples of main gas pipelines with welded connection // Intellektualnye sistemy v proizvodstve. 2020. V. 18. № 1. P. 4—8.
  29. Król Roman, Siemiątkowski Zbigniew. The analysis of shrink-fit connection – the methods of heating and the factors influencing the distribution of residual stresses // Heliyon. 2019. V. 5, No. 11.
  30. Wu X., Li C., Sun S., Tong R., Li Q. A Study on the Heating Method and Implementation of a Shrink-Fit Tool Holder // Energies. 2019. No. 12.
  31. Fedorinin V.N., Sidorov V.I. Polarizing optical sensors for measuring physical quantities // Zhurnal analiticheskoi khimii. 2005. V. 55. No. 7.
  32. Fedorinin V.N., Bekher S.A., Vyplaven V.S. Optical strain gauge in the problem of wheel-rail interaction // Avtometriia. 2023. V. 59. No. 3. P. 33—42.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Problem statement.

下载 (477KB)
3. Fig. 2. Sketch of the samples of the joints of the ring with the axis with tension n after (a) and before (b) the press fit.

下载 (305KB)
4. Fig.3. Test scheme: a sample of a press joint with a deformation sensor, a thermistor and a heating bar (a); temperature and deformation measurement sites (b).

下载 (1016KB)
5. Fig. 4. Temperature dependence on time during tests at a distance from the heated bar 35 mm (a) and 124 mm (b) next to the deformation sensor.

下载 (414KB)
6. Fig. 5. Thermograms of the ring surface after 20 s (a) and 80 s (b) after the start of heating and temperature profiles on a semi-logarithmic scale (c).

下载 (543KB)
7. Fig. 6. Time dependences of deformations of the bearing ring, measured by the sensor pos. 2 Fig. 3b, when testing a free ring, a sample without tension and a sample with tension.

下载 (240KB)
8. Fig. 7. The results of finite element modeling of the free ring of the bearing and the pressure joint with tension: the dependence of deformations (a) and temperature (b) on time, the shape of the free ring and the temperature field 2 s (c) and 98 s (d) after the start of heating.

下载 (791KB)
9. Fig. 8. Time dependences of deformations (a) of the shafts of press joints with different strains, measured by the sensor pos. 2 Fig. 3b, and the rates of change of deformations averaged over the interval of 2 s (b) and 50 s (c).

下载 (598KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».