Electrochemical realkalisation of carbonated cementitious matrix: characterization research to influence of time and current density

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The depassivation of reinforcement caused by the reduction of concrete alkalinity due to the concrete carbonation process can induce the appearance of steel corrosion. The restoration of alkalinity can be done by chemical realkalinization (CRA) or electrochemical realkalinization (ERA) methods. In this context, the present work aims to evaluate the influence of the application time and the current density used in the electrochemical realkalinization process. For the development of the research, mortar samples were molded with a reinforced bar for electrical connection and remained for 24 months in a carbonation chamber. After this period, the carbonation depth that occurred was verified and then the specimens were submitted to the electrochemical realkalinization process using 3 different current values, 0.5, 1.0 and 1.5A/m2 and remained at different periods (7 , 14 and 21 days) in the recovery process. Additional tests of absorption, compressive strength, carbonation depth measurements, mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TGA) were also carried out on reference, carbonated and realkalinized specimens. Based on the results of the tests, it was observed that the recovery process starts after 7 days with the lowest current density used. A better current density x application time ratio was also observed considering the results of the mercury intrusion porosimetry and thermogravimetric analysis tests in conjunction with the realkalinization process.

Sobre autores

Ana Rachadel

Univeridade Tecnológica Federal do Paraná

Paraná, Brasil

Wellington Mazer

Univeridade Tecnológica Federal do Paraná

Email: wmazer@utfpr.edu.br
Paraná, Brasil

Bibliografia

  1. Yeih W., Chang J.J. A study on the efficiency of electrochemical realkalisation of carbonated concrete // Construction and building materials. 2005. No. 19. P. 516-524.
  2. Broomfield J.P. Corrosion of steel in concrete: understanding, investigation and repair / 2 ed. Taylor & francis group, New York. 2007.
  3. Gonz�lez F., Fajardo G., Arliguie G., Ju�rez C.A., Escadeillas G. Electrochemical realkalisation of carbonated concrete: an alternative approach to prevention of reinforcing steel corrosion // International Journal of Electrochemical Science. 2011. No. 6. P. 6332-6349.
  4. Papadakis V.G., Vayenas C.G., Fardis M.N. Experimental investigation and mathematical modeling of the concrete carbonation problem // Chemical Engineering Science. 1991. V. 46. No. 5/6. P. 1333-1338.
  5. Banfill P.F.G. Features of the mechanism of electrolytic re-alkalisation and desalination treatments for reinforced concrete / In: Rn. Swamy (ed.), corrosion and corrosion protection of steel in concrete: proceedings of the international conference, 1994. P. 1489-1498, sheffield academic press.
  6. Mietz I.J. Electrochemical realkalisation for rehabilitation of reinforced concrete structures // Materials and Corrosion. 1995. No. 46. P. 527-533.
  7. Daniyal M., Akhtar S. Corrosion assessment and control techniques for reinforced concrete structures: a review // Journal of Building Pathology and Rehabilitation 5:1. 2020. https://doi.org/10.1007/s41024-019-0067-3
  8. Rocha A.K.A., Diniz H.A.A., Anjos M.A.S., Barbosa N.P., Araujo A.R.C. Estudo da carbonata��o acelerada em argamassas do caa com elevados teores de adi��es minerais. 2021. rct v.7.
  9. Silva R.G.R., Magalh�es A.G., Campos C.A., Silva I.R. Assessment of the effect of changes in consolidation conditions in the advance of the carbonation front in cementitious matrix composites // Rev. Ibracon Estrut. Mater. 2021. V. 14. No. 5. e14512.
  10. Possan E., Thomaz W.A., Aleandri G.A., Felix E.F., Santos A.C.P. Co2 uptake potential due to concrete carbonation: a case study // Case Studies In Construction Materials. 2017. No. 6. P. 147-161.
  11. Vu T.H., Pham G., Chonier A., Brouard E., Rathnarajan S., Pillai R., Gettu R., Santhanam M., Aguayo F., Folliard K.J., Thomas M.D., Moffat T., Shi C., Sarnot A. Impact of different climates on the resistance of concrete to natural carbonation // Construction and Building Materials. 2019. No. 2016. P. 450-467.
  12. Gonz�lez J.A., Cobo A., Gonz�lez M.N., Otero E. On the effectiveness of realkalisation as a rehabilitation method for corroded reinforced concrete structures // Material and Corrosion. 2000. No. 51. P. 97-103.
  13. Miranda J.M., Gonz�lez J.A., Cobo A., Otero E. Several questions about electrochemical rehabilitation methods for reinforced concrete structures // Corrosion Science. 2006. No. 48. P. 2172-2188.
  14. Bertolini L., Carsana M., Redaelli E. Conservation of historical reinforced concrete structures damaged by carbonation induced corrosion by means of electrochemical realkalisation / In: Proceedings of the 2nd Fib International Congress. 2006.
  15. Bertolini L., Carsana M., Redaelli E. Conservation of historical reinforced concrete structures by means of electrochemical realkalisation // Journal Of Cultural Heritage. 2008. No. 9. P. 376-385.
  16. Reou J.S., Ann K.Y. The distribution of hydration products at the steel-concrete interface for concretes subjected to electrochemical treatment // Corrosion Science. 2010. No. 52. P. 2197-2205.
  17. Ribeiro P.H.L.C., Meira G.R., Ferreira P.R.R., Perazzo N. Electrochemical realkalisation of carbonated concretes: influence of material characteristics and thickness of concrete reinforcement cover // Construction and Building Materials. 2013. No. 40. P. 280-290.
  18. Zou Z., Wu J., Yu W., Wang Z. Influence of mineral admixture on the electrochemical realkalisation of carbonated concrete // Journal of Materials in Civil Engineering. 2017. V. 29.
  19. Khan M.I., Lynsdale C.J. Strength, permeability and carbonation of high-performance concrete // Cement ad Concrete Research. 2002. No. 32. P. 123-131.
  20. Kurda R., Brito J., Silvestre J.D. Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2 // Journal of CO2 Utilization. 2019. No. 29. P. 12-19.
  21. Aguirre-Guerrero A.M., Guti�rrez R.M. Efficiency of electrochemical realkalisation treatment on reinforced blended concrete using ftir and tga // Construction and Building Materials. 2018. No. 193. P. 518-528.
  22. Tissier Y., Bouteiller V., Marie-Victoire E., Joiret S., Chaussadent T., Tong Y. Electrochemical chloride extraction to repair combined carbonated and chloride contaminated reinforced concrete // Electrochimica Acta. 2019. No. 317. P. 486-493.
  23. Zhu P., Zhang J., Qu W. Long-term effects of electrochemical realkalization on carbonated concrete // Front. Struct. Civ. Eng. 2020. V. 14 (1). P. 127-137 https://doi.org/10.1007/s11709-019-0583-x
  24. Associa��o Brasileira De Normas T�cnicas. Nbr 7211: Agregados para concreto - especifica��o. Rio de Janeiro. 2019.
  25. Lachovicz P.O. Influ�ncia do tipo de malha e do tipo de argamassa na realcaliniza��o eletroqu�mica de estruturas de concreto armado, Disserta��o De M. Sc., Ppgec/Utfpr, Curitiba, Pr, Brasil. 2019.
  26. Associa��o brasileira de normas t�cnicas. Nbr 6118: Projeto De Estruturas De Concreto - Procedimento. Rio de Janeiro. 2014.
  27. Associa��o brasileira de normas t�cnicas. Nbr 7215: Cimento portland - determina��o da resist�ncia � compress�o de corpos de prova cil�ndricos. Rio de Janeiro. 2019.
  28. Associa��o brasileira de normas t�cnicas. Nbr 9778: Argamassa e concreto endurecidos - determina��o da absor��o de �gua, �ndice de vazios e massa espec�fica. Rio de Janeiro. 2005.
  29. Associa��o brasileira de normas t�cnicas. Nbr 5739: Concreto - ensaio de compress�o de corpos de prova cil�ndricos. Rio de Janeiro. 2018.
  30. Zhan B.J., Xuan D.X., Zeng W., Poon C.S. Carbonation treatment of recycled concrete aggregate: effect on transport properties and steel corrosion of recycled aggregate concrete // Cement and Concrete Composites. 2019. No. 104. P. 103360.
  31. Cui H., Tang W., Liu W., Dong Z., Xing F. Experimental studies on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms // Construction and Building Materials. 2015. No. 93. P. 522-527.
  32. Morandeau A., Thi�ry M., Dangla P. Investigation of the carbonation mechanism of ch and c-s-h in terms of kinetics, microstructure changes and moisture properties // Cement and Concrete Research. 2014. No. 56. P. 153-170.
  33. Dos Reis G.S., Thue P.S., Cazacliu B.G., Lima E.C., Sampaio C.H., Quattrone M., Ovsyannikova E., Kruse A., Dotto G.L. Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer // Journal of Cleaner Production. 2020. No. 256. P. 120416.
  34. Tam V.W.Y., Butera A., Le K.N. Microstructure and chemical properties for CO2 concrete // Construction and Building Materials. 2020. No. 262. P. 120584.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies