Ultrasound tomography based on the coefficient inverse problem as a way to combat structural noise

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper proposes to use the ultrasound tomography method based on the solution of the inverse coefficient problem to reduce the level of structural noise. Mathematical models used in ultrasonic tomogra-phy well describe such physical effects as refraction, diffraction and redispersion effects. It is logical to ex-pect that reconstruction of the internal structure of metallic samples using ultrasound tomography will be more efficient compared to digital antenna focusing (DAF) techniques. Due to the nonlinearity of the inverse problem of ultrasound tomography, an iterative MultiStage method is used to ensure convergence to the glob-al minima of the non-convexity functional. The paper presents the results of numerical experiments to restore the image of the internal structure of the welded joint, which may contain lateral cylindrical holes and crack models. The region of the welded metal is represented in the form of sections constructed according to the principle of Voronoi diagrams. In each section the velocity is constant and its value is randomly distributed. In the model adopted in the paper, the structural noise is formed due to multiple scattering at the boundaries of sections with different sound velocity. It was assumed that the antenna array is located on the outer surface of the control object of known thickness. The results obtained show that the tomographic method allows us to determine the shape and speed of sound in low-contrast reflectors, for which the CFA method is ineffective.

作者简介

E. Bazulin

ECHO+ LLC

Email: bazulin@echoplus.ru
Moscow, Russia

A. Goncharsky

Lomonosov Moscow State University

Email: gonchar@srcc.msu.ru
Moscow, Russia

S. Romanov

Lomonosov Moscow State University

Email: romanov60@gmail.com
Moscow, Russia

S. Seryozhnikov

Lomonosov Moscow State University

Email: s2110sj@gmail.com
Moscow, Russia

参考

  1. Качанов В.К., Карташев В.Г., Соколов И.В., Воронкова Л.В., Шалимова Е.В. Структурный шум в ультразвуковой дефектоскопии. М.: Издательский дом МЭИ, 2016. 180 с.
  2. Ковалев А.В., Козлов В.Н., Самокрутов А.А., Шевалдыкин В.Г., Яковлев Н.Н. Импульсный эхо-метод при контроле бетона. Помехи и пространственная селекция // Дефектоскопия. 1990. № 2. С. 29-41.
  3. Ермолов И.Н. К вопросу о выборе оптимальных параметров эхо-метода ультразвуковой дефектоскопии // Дефектоскопия. 1965. № 6. С. 51-61.
  4. Тяпкин В.Н., Фомин А.Н. Основы построения радиолокационных станций радиотехнических войск. Красноярск: СФУ, 2011. 536 с.
  5. Базулин Е.Г., Коновалов Д.А. Применение процедуры выбеливания эхосигналов для уменьшения уровня структурного шума при проведении ультразвукового контроля // Дефектоскопия. 2019. № 11. С. 3-15.
  6. Воронков В.А., Воронков И.В., Козлов В.Н., Самокрутов А.А., Шевалдыкин В.Г. О применимости технологии антенных решеток в решении задач ультразвукового контроля опасных производственных объектов // В мире неразрушающего контроля. № 1 (51). Март 2011. С. 64-70.
  7. Holmes C., Drinkwater B.W., Wilcox P.D. Postprocessing of the full matrix of ultrasonic transmit-receive array data for nondestructive evaluation // NDT&E International. 2005. V. 38. P. 701-711.
  8. Базулин Е.Г. Определение типа отражателя по изображению, восстановленному по эхосигналам, измеренным ультразвуковыми антенными решетками // Дефектоскопия. 2014. № 3. С. 12-22.
  9. Beilina L., Klibanov M.V., Kokurin M.Y. Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem //j. Math. Sci. 2010. V. 167. P. 279-325. doi: 10.1007/s10958-010-9921-1
  10. Natterer F. Possibilities and limitations of time domain wave equation imaging / In: Contemporary Mathematics. 2011. V. 559 (Providence: American Mathematical Society). P. 151-162.
  11. Goncharsky A.V., Romanov S.Y. Supercomputer technologies in inverse problems of ultrasound tomography // Inverse Probl. 2013. V. 29. P. 075004.
  12. Virieux J., Operto S. An overview of full-waveform inversion in exploration geophysics // Goephysics. 2009. V. 74. P. WCC127-WCC152.
  13. Marty P., Boehm C., Fichtner A. Acoustoelastic full-waveform inversion for transcranial ultrasound computed tomography // Proc. SPIE. Medical Imaging: Ultrasonic Imaging and Tomography. 2021. V. 11602. P. 1160211. https://doi.org/10.1117/12.2581029
  14. Ruiter N.V., Zapf M., Hopp T., Gemmeke H., van Dongen K.W.A. USCT data challenge // Proc. SPIE. Medical Imaging: Ultrasonic Imaging and Tomography. 2017. V. 10139. P. 101391N. https://doi.org/10.1117/12.2272593
  15. Tran K.T., Jalinoos F., Nguyen T.D., Agrawal A.K. Evaluation of Bridge Abutment with Ultraseismic Waveform Tomography: Field Data Application // Journal of Nondestructive Evaluation. 2019. V. 38. P. 95.
  16. Seidl R., Rank E. Iterative time reversal based flaw identification // Computers & Mathematics with Applications. 2016. V. 72. P. 879-892.
  17. Bazulin E., Goncharsky A., Romanov S., Seryozhnikov S. Ultrasound transmission and reflection tomography for nondestructive testing using experimental data // Ultrasonics. 2022. V. 124. P. 106765. doi: 10.1016/j.ultras.2022.106765
  18. Goncharsky A.V., Romanov S.Y., Seryozhnikov S.Y. Multistage Iterative Method to Tackle Inverse Problems of WaveTomography // Supercomputing Frontiers and Innovations. 2022. V. 9. P. 87-107.
  19. Кокурин М.Ю. О редукции нелинейной обратной задачи для гиперболического уравнения на плоскости к линейному интегральному уравнению // Вычислительные методы и программирование. 2009. № 3. C. 300-305.
  20. Hamilton B., Bilbao S. Fourth-order and optimised finite difference schemes forthe 2-D wave equation / In: Proc. of the 16th Int. Conference on Digital AudioEffects (DAFx-13). Springer. 2013. P. 363-395.
  21. Kim K.H., Park Q.H. Overlapping computation and communication of three-dimensional FDTD on a GPU cluster // Comput. Phys.Commun. 2012. V. 183. P. 2364-2369.
  22. Labyed Y., Huang L. Toward real-time bent-ray breast ultrasound tomography using GPUs / In: Medical Imaging, Proc. of SPIE. 2014. V. 9040. P. 90401N.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».