Investigation of rolling bearing weak fault diagnosis based on cnn with two-dimensional image
- Authors: Yu Z.1, Longtao M.1, Junhao Z.1
-
Affiliations:
- Shaanxi Polytechnic Institute(SXPI)
- Issue: No 1 (2023)
- Pages: 63-76
- Section: Articles
- URL: https://journals.rcsi.science/0130-3082/article/view/144328
- DOI: https://doi.org/10.31857/S0130308223010074
- EDN: https://elibrary.ru/BWBKMN
- ID: 144328
Cite item
Abstract
Keywords
About the authors
Zheng Yu
Shaanxi Polytechnic Institute(SXPI)
Email: zhengyu169@126.com
Xianyang, China
Mu Longtao
Shaanxi Polytechnic Institute(SXPI)Xianyang, China
Zhao Junhao
Shaanxi Polytechnic Institute(SXPI)Xianyang, China
References
- Jie L., Changjie L., Yuhan S., Xingwei S. A study on bearing fault diagnosis based on LSGAN-SqueezeNet // Journal of Vibration and Shock. 2022. V. 41. P. 293-300. https://doi.org/10.13465/j.cnki.jvs.2022.12.036
- Xiaoli Z., Minping J. Fault Diagnosis of Rolling Bearing Based on Feature Reduction with Global-Local Margin Fisher Analysis // Neurocomputing. 2018. V. 315. P. 447-464. https://doi.org/10.1016/j.neucom.2018.07.038
- Nibaldo R., Pablo A., Lida B., Guillermo C.G.Combining Multi-scale Wavelet Entropy and Kernelized Classification for Bearing Multi-fault Diagnosis // Entropy. 2019. V. 21. P. 15-25. https://doi.org/10.3390/e21020152
- Xiaohui G., Shaopu Y., Yongqiang L., Rujiang H., Zechao L. Multi-sparsity-based blind deconvolution and its application to wheelset bearing fault detection // Measurement. 2022. V. 199. https://doi.org/10.1016/J.MEASUREMENT.2022.111449
- Mingzhu L., Shixun L., Xiaoming S., Changzheng C. Early degradation detection of rolling bearing based on adaptive variational mode decomposition and envelope harmonic to noise ratio // Journal of Vibration and Shock. 2021. V. 40. P. 271-280. https://doi.org/10.13465/j.cnki.jvs.2021.13.034
- Yong H., Hong W., Sui G. New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm // Journal of Vibration and Shock. 2021. V. 40. P. 184-189. https://doi.org/10.13465/j.cnki.jvs.2021.06.025
- Xiaochi L., Shi X., Yundong S., Gongmin L., Jinyu T., Xi Z., Zhuang L. Rolling bearing fault diagnosis method based on GWO-NLM and CEEMDAN // Journal of Aerospace Power. 2022. P. 1-13. 10.13224/j.cnki.jasp.20210547
- Zihao L., Guangrui W., Qiao Z., Shuzhi D., Xin H., Haoxuan Z. Rolling Bearing Fault Diagnosis Based on Multi-scale Mixed Domain Feature Extraction and Domain Adaptation // Journal of Vibration, Measurement & Diagnosis. 2022. V. 42. P. 183-185. https://doi.org/10.16450/j.cnki.issn.1004-6801.2022.01.028
- Xiaojuan L., Chengji S. Application of the P-box theory and HGWO-SVM in the fault diagnosis of rolling bearings // Journal of Vibration and Shock. 2021. V. 40. P. 234-241. https://doi.org/10.13465/j.cnki.jvs.2021.22.032
- Ming W., Zhang D., Zhen Y., Yong L., Guoqian W. Dynamic mode deco-mposition and its application in early bearing fault diagnosis // Journal of Vibrati-on and Shock. 2022. V. 41. P. 313-320. https://doi.org/10.13465/j.cnki.jvs.2022.12.038
- Tianlong G., Zhenhai S., Chenzhong B., Liang C. Fault diagnosis of rollin-g bearing based on multi-scale convolutional neural network // Machinery Design & Manufacture. 2022. V. 20. P. 20-23. https://doi.org/10.19356/j.cnki.1001-3997.20211105.003
- Xiaoxi D., Qingbo H. Energy-Fluctuated Multiscale Feature Learning With Deep ConvNet for Intelligent Spindle Bearing Fault Diagnosis // IEEE Transacti-ons on Instrumentation and Measurement. 2017. V. 66. P. 1926-1935. https://doi.org/10.1109/tim.2017.2674738
- Jiangtao J., Zifei X., Chun L., Wei-pao M., Jun-qing X., Kang S. Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion // Control Theory & Applications. 2022. V. 39. P. 109-116.
- Xiaoxia Y., Baoping T., Jing W., Lei D. Fault diagnosis for aero-engine accessory gearbox by adaptive graph convolutional networks under intense background noise conditions. 2021. V. 41. P. 78-86. https://doi.org/10.19650/j.cnki.cjsi.J2107732
- Wang Z., Oates T. Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks / Workshops at the Twenty-ninth Aaai Conference on Artificial Intelligence, 2015
- Chaolung Y., Zhixuan C., Chenyi Y. Sensor Classification Using Convolutional Neural Network by Encoding Multivariate Time Series as Two-Dimensional Colored Images // Sensors (Basel, Switzerland). 2020. V. 20. P. 168. https://doi.org/10.3390/s20010168
- Hoonyong L., Kanghyeok Y., Namgyun K., Changbum R.A. Detecting excessive load-carrying tasks using a deep learning network with a Gramian Angular Field // Automation in Construction. 2020. V. 120. P. 103390. https://doi.org/10.1016/j.autcon.2020.103390
- Zhupeng W., Jie C., Lianhua L., Lingling J. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN // Journal of Zhejiang University (Engineering Science). 2022. V. 56. P. 1212-1219. https://doi.org/10.3785/j.issn.1008-973X.2022.06.020
- Sen L., Aiguo W., Xintao D., Cuiwei Y. MGNN. A multiscale grouped convolutional neural network for efficient atrial fibrillation detection // Compbiomed. 2022. V. 148. P. 105863. https://doi.org/10.1016/J.COMPBIOMED.2022.105863
- Reddy B.L., Uma M.R.N., Nelleri A. Deep convolutional neural network for three-dimensional objects classification using off-axis digital Fresnel holography // Journal of Modern Optics. 2022. V. 69. P. 705-717. https://doi.org/10.1080/09500340.2022.2081371
- Yuxian Z., Fang D. Load classification based on piecewise aggregate approximation of particle swarm optimization // Journal of Shenyang University of Technology. 2021. V. 43. P. 123.
- Ang G., JianYong Z., Fei M., HaoYuan S., Xing Q., Yang X., Xuan L., MengLei G., DanQi L. Electricity Theft Detection Algorithm Based on Triplet Network // Proceedings of the CSEE. 2022. V. 42. P. 3975-3986. https://doi.org/10.13334/j.0258-8013.pcsee.211040
- Yunwei P., Jiang G., Taotao L., Haixiao W. A Recognition Method for Radar Emitter Signals Based on Convolutional Neural Network with Multiple Learning Units // Journal of Beijing University of Posts and Telecommunications. 2021. V. 44. P. 74-82. https://doi.org/10.13190/j.jbupt.2021-055
- Peng Y., Xiaoxu H., Yuhui H., Jin Y., Shi W., Lei L. Online alarm recognition of power grid dispatching based on BERT-DSA-CNN and a knowledge base // Power System Protection and Control. 2022. V. 50. P. 131. https://doi.org/10.19783/j.cnki.pspc.210705
- Ren W., Junpeng H., Qidong Y., Tianren L., Ben Y. Research of LSTM model-based intelligent guidance of flight aircraft // Chinese Journal of Theoretical and Applied Mechanics. 2021. V. 53. P. 2054.
- Hongrui Z., Guojun Y., Chengji Y., Guangming T., Zhan W., Zhongzhe H., Xiaoyang Z., Xuejun A. Survey on Network of Distributed Deep Learning Training // Journal of Computer Research and Development. 2021. V. 58. P. 100.
- Wade A.S., Robert B.R. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study // Mechanical Systems and Signal Processing. 2015. V. 64. P. 100-10.
Supplementary files
