Normalization of proton-radiographic images of objects with quasi-uniform areal density

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A technique of calculating the beam transmission through static objects with a quasi-uniform areal density using a single proton-radiographic image was developed under the condition of a gaussian-like transverse beam profile. The calculated transmission images are intended for the density reconstruction of the objects under study. A proton-radiographic investigation of static targets was carried out at the experimental facility with special magnetic optics PUMA at proton energy of 800 MeV and particle intensity 1010 per image. It has been shown that the use of the technique allows restoring the transmission of an object under study with an average relative error of about 1-1.2%.

Sobre autores

N. Shilkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences

Email: shilkin@ficp.ac.ru
Черноголовка, Россия

V. Mintsev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences

Черноголовка, Россия

D. Yuriev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences

Черноголовка, Россия

A. Kantsyrev

National Research Centre Kurchatov Institute

Москва, Россия

A. Bogdanov

National Research Centre Kurchatov Institute

Москва, Россия

D. Kolesnikov

National Research Centre Kurchatov Institute

Москва, Россия

A. Golubev

National Research Centre Kurchatov Institute;3AO Science and Innovations, SAEC Rosatom

Москва, Россия

Bibliografia

  1. Koehler A.M. Proton radiography // Science. 1968. V. 160. No. 3825. P. 303-304. https://doi.org/10.1126/science.160.3825.303
  2. West D., Sherwood A.C. Radiography with 160 MeV protons // Nature. 1972. V. 239. P. 157-159. https://doi.org/10.1038/239157B0
  3. West D., Sherwood A.C. Proton-scattering radiography // Non-destructive Testing. 1973. V. 6. P. 249-257. https://doi.org/10.1016/0029-1021(73)90072-8
  4. Mottershead C.T., Zumbro J.D. Magnetic optics for proton radiography // Proc. of the 1997 Particle Accelerator Conf. 1997. V. 2.Comyn M. et al. Eds. Vancouver: IEEE. P. 1397-1399. https://doi.org/10.1109/PAC.1997.750705
  5. Merill F.E. Flash proton radiography // Reviews of Accelerator Science and Technology. 2015. V. 08. P. 165-180. https://doi.org/10.1142/S1793626815300091
  6. Yates G., Albright K., Alrick K., Gallegos R., Galyardt J., Gray N., Hogan G., Holmes V., Jaramillo S., King N., McDonald T., Morley K., Morris C., Numkena D., Pazuchanics P., Riedel C., Sarracino J., Ziock H.J., Zumbro J. An intensified/shuttered cooled CCD camera for dynamic proton radiography // Proc. SPIE 3302, Digital Solid State Cameras: Designs and Applications. 1998. V. 3302. Ed. Williams G.M. SPIE. P. 140-151. https://doi.org/10.1117/12.304577
  7. King N.S.P., Ables E., Adams K., Alrick K.R., Amann J.F., Balzar S., Barnes Jr P.D., Crow M.L., Cushing S.B., Eddleman J.C., Fife T.T., Flores P., Fujino D., Gallegos R.A., Gray N.T., Hartouni E.P., Hogan G.E., Holmes V.H.,at al. An 800-MeV proton radiography facility for dynamic experiments // Nucl. Instrum. Methods Phys. Res. A 1999. V. 424. P. 84-91. https://doi.org/10.1016/S0168-9002(98)01241-8
  8. Morris C.L., Ables E., Alrick K.R., Aufderheide M.B., Barnes P.D., Buescher K.L., Cagliostro D.J., Clark D.A., Clark D.J., Espinoza C.J., Ferm E.N., Gallegos R.A., Gardner S.D., Gomez J.J., Greene G.A., Hanson A.,at al.Flash radiography with 24 GeV/c protons //j. Appl. Phys. 2011. V. 109. P. 104905. https://doi.org/10.1063/1.3580262
  9. Golubev A.A., Demidov V.S., Demidova E.V., Kats M.M., Kolerov S.B., Skachkov V.S., Smirnov G.N., Turtikov V.I., Fertman A.D., Sharkov B.Y. Application of TWAC beams for diagnostics of fast processes // Atomic Energy. 2008. V. 104. P. 134-141. https://doi.org/10.1007/S10512-008-9004-2
  10. Antipov Yu.M., Afonin A.G., Vasilevskii A.V., Gusev I.A., Demyanchuk V.I., Zyat'kov O.V., Ignashin N.A., Karshev Yu.G., Larionov A.V., Maksimov A.V., Matyushin A.A., Minchenko A.V., Mikheev M.S., at al. A radiographic facility for the 70-GeV proton accelerator of the Institute for high energy physics // Instrum. Exp. Tech. 2010. V. 53. P. 319-326. https://doi.org/10.1134/S0020441210030012
  11. Varentsov D., Antonov O., Bakhmutova A., Barnes C.W., Bogdanov A., Danly C.R., Efimov S., Endres M., Fertman A., Golubev A.A., Hoffmann D.H.H., Ionita B., Kantsyrev A., Krasik Ya.E., Lang P.M., Lomonosov I., Mariam F.G., Markov N., at al. Commissioning of the PRIOR proton microscope // Rev. Sci. Instrum. 2016. V. 87. P. 023303. https://doi.org/10.1063/1.4941685
  12. Freeman M.S., Allison J., Andrews M., Ferm E., Goett J.J., Kwiatkowski K., Lopez J., Mariam F., Marr-Lyon M., Martinez M., Medina J., Medina P., Merrill F.E., Morris C.L., Murray M.M., Nedrow P., Neukirch L.P., Prestridge K., Rigg P., Saunders A., Schurman T., Tainter A., Trouw F., Tupa D., Tybo J., Vogan-McNeil W., Wilde C. Inverse-collimated proton radiography for imaging thin materials // Rev. Sci. Instrum. 2017. V. 88. P. 013709. https://doi.org/10.1063/1.4973767
  13. Burtsev V.V., Lebedev A.I., Mikhailov A.L., Ogorodnikov V.A., Oreshkov O.V., Panov K.N., Rudnev A.V., Svirskii O.V., Syrunin M.A., Trutnev Yu.A., Khramov I.V. Use multiframe proton radiography to investigate fast hydrodynamic processes // Combust., Explos. Shock Waves. 2011. V. 47. P. 627-638. https://doi.org/10.1134/S0010508211060025
  14. Sjue S.K.L., Fesseha G.M., Merill F.E., Morris C.L., Saunders A. High order magnetic optics for high dynamic range proton radiography at kinetic energy 800 MeV // Rev. Sci.Instrum. 2016. V. 87. P. 015110. https://doi.org/10.1063/1.4939822
  15. Holtkamp D.B., Clark D.A., Ferm E.N., Gallegos R.A., Hammon D., Hemsing W.F., Hogan G.E., Holmes V.H., King N.S.P., Liljestrand R., Lopez R.P., Merrill F.E., Morris C.L., Morley K.B., Murray M.M., Pazuchanics P.D., Prestridge K.P., Quintana J.P., Saunders A., Schafer T., Shinas M.A., Stacy H.L. A survey of high explosive-induced damage and spall in selected metals using proton radiography // AIP Conf. proc. 2004. V. 706. P. 477-482. https://doi.org/10.1063/1.1780281
  16. Ferm E.N., Morris C.L., Quintana J.P., Pazuchanic P., Stacy H., Zumbro J.D., Hogan G., King N. Proton radiography examination of unburned regions in PBX 9502 corner turning experiment // AIP Conf. Proc. 2002. V. 620. P. 966-969. https://doi.org/10.1063/1.1483699
  17. Neri F., Walstrom P.L. A simple empirical forward model for combined nuclear and multiple Coulomb scattering in proton radiography of thick objects // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 229. P. 425-435. https://doi.org/10.1016/J.NIMB.2004.12.116
  18. Freeman M., Allison J., Espinoza C., Goett J.J., Hogan G., Hollander B., Kwiatkowski K., Lopez J., Mariam F., Martinez M., Medina J., Medina P., Merrill F., at al. 800-mev magnetic-focused ash proton radiography for high-contrast imaging of low-density biologically-relevant targets using an inverse-scatter collimator // Proc. SPIE. 2016. V. 9783. Medical Imaging 2016: Physics of Medical Imaging. P. 97831X. https://doi.org/10.1117/12.2216862
  19. Kantsyrev A.V., Scoblyakov A.V., Bogdanov A.V., Golubev A.A., Shilkin N.S., Yuriev D.S., Mintsev V.B. Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope //j. Phys.: Conf. Ser. 2018. V. 946. P. 012019. https://doi.org/10.1088/1742-6596/946/1/012019
  20. Kantsyrev A.V., Golubev A.A., Bogdanov A.V., Demidov V.S., Demidova E.V., Ladygina E.M., Markov N.V., Skachkov V.S., Smirnov G.N., Rudskoy I.V., Kuznetsov A.P., Khudomyasov A.V., Sharkov B.Yu., Dudin S.V., Kolesnikov S.A., Mintsev V.B., at al. TWAC-ITEP proton microscope facility // Instrum. Exp. Tech. 2014. V. 57. P. 1-10. https://doi.org/10.1134/S0020441214010151
  21. Kantsyrev A.V., Golubev A.A., Turtikov V.I., Bogdanov A.V., Sharkov B.Y., Demidov V.S., Skachkov Vl.S., Markov N.V., Mintsev V.B., Fortov V.E., Kolesnikov S.A., Nikolaev D.N., Shilkin N.S., Ternovoy V.Y., Utkin A.V., Yuriev D.S., Burtsev V.V., Zavialov N.V., Mikhailov A.L., Rudnev A.V., Tatsenko M.V., Zhernokletov M.V., Kartanov S.A. ITEP proton microscopy facility // 19th IEEE Pulsed Power Conf. (PPC) 2013. IEEE. P. 1077-1081. https://doi.org/10.1109/ppc.2013.6627498
  22. Mintsev V.B., Shilkin N.S., Ternovoi V.Ya., Nikolaev D.N., Yuriev D.S., Golubev A.A., Kantsyrev A.V., Skobliakov A.V., Bogdanov A.V., Varentsov D.V., Hoffmann D.H.H. High-explosive generators of dense low-temperature plasma for proton radiography // Contrib. Plasma Phys. 2018. V. 58. P. 93-98. https://doi.org/10.1002/ctpp.201700141
  23. Kolesnikov S., Dudin S., Lavrov V., Nikolaev D., Mintsev V., Shilkin N., Ternovoi V., Utkin A., Yakushev V., Yuriev D., Fortov V., Golubev A., Kantsyrev A., Shestov L., Smirnov G., Turtikov V., Sharkov B., Burtsev V., Zavialov N., Kartanov S., Mikhailov A., Rudnev A., Tatsenko M., Zhernokletov M. Shockwave and detonation studies at ITEP-TWAC proton radiography facility // AIP Conf. Proc. 1426. 2012. V. 390. P. 390-393. https://doi.org/10.1063/1.3686300
  24. Schneider C., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis // Nat. Methods. 2012. V. 9. P. 671-675. https://doi.org/10.1038/nmeth.2089
  25. Shilkin N.S., Mintsev V.B., Yuriev D.S., Kantsyrev A.V., Kolesnikov D.S., Bogdanov A.V., Panyushkin V.A., Scobliakov A.V., Gavrilin R.O., Golubev A.A. Spatial calibration of light yield of a proton radiography scintillator // Phys. At. Nucl. 2022. V. 85. i. 10. [принято к печати] https://doi.org/10.1134/S1063778822100568
  26. Particle Data Group, Zyla P. et al. Review of particle physics // Prog. Theor. Exp. Phys. 2020. V. 2020. P. 083C01. https://doi.org/10.1093/ptep/ptaa104
  27. Varentsov D., Bogdanov A., Demidov V.S., Golubev A.A., Kantsyrev A., Lang P.M., Nikolaev D.N., Markov N., Natale F., Shestov L., Simoniello P., Smirnov G.N., Durante M. First biological images with high-energy proton microscopy // Phys. Med. A. 2012. V. 29. P. 208-213. https://doi.org/10.1016/j.ejmp.2012.03.002

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies