A circular eddy current probe using miniature fluxgates for multi-orientation slit evaluation in steel components

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Detection of crack propagation, such as its direction and depth, is one of the important aspects in ensuring the safety and reliability of steel structures. This study presents a development of a circular eddy current excitation probe using a planar differential miniature fluxgate to detect vertical and horizontal slits. The probe utilizes a circular eddy current excitation technique that induces multi-direction eddy currents in a mild steel plate and a sensing configuration based on the tangential magnetic response. The performances of the developed probe were characterized based on line and 2-D map scans of the magnetic response due to the induced eddy currents in mild-steel samples from different orientations and depths of artificial slits. The results showed that the developed probe obtained a signal correlation with the slit depth at different slit orientations. The vertical and horizontal slits were able to be visualized from the magnetic field distribution, where the differential imaginary component had a better detection sensitivity for the vertical slits represented by the measured peak-to-peak signals. The detection of multi-orientation slits revealed that the slit orientation could be estimated from the magnetic response maps with a detection limit of 5 mm in the slit length and 0.5 mm in the slit width, respectively.

Негізгі сөздер

Авторлар туралы

Mohd Saari

Universiti Malaysia Pahang

Email: mmawardi@ump.edu.my
Pahang, Malaysia

Nurul Nadzri

Universiti Malaysia Pahang

Pahang, Malaysia

Mohd Zaini

Universiti Malaysia Pahang

Pahang, Malaysia

Mohd Sulaiman

Universiti Malaysia Pahang

Pahang, Malaysia

Toshihiko Kiwa

Okayama University

Okayama, Japan

Әдебиет тізімі

  1. Garc�a-Mart�n J., G�mez-Gil J., V�zquez-S�nchez E. Non-destructive techniques based on eddy current testing // Sensors. 2011. V. 11. No. 3. P. 2525-2565. doi: 10.3390/s110302525
  2. Tsukada K., Hayashi M., Nakamura Y., Sakai K., Kiwa T. Small Eddy Current Testing Sensor Probe Using a Tunneling Magnetoresistance Sensor to Detect Cracks in Steel Structures // IEEE Trans. Magn. 2018. V. 54. No. 11. P. 1-5. doi: 10.1109/TMAG.2018.2845864
  3. Xu P., Shida K. Eddy Current Testing Probe Composed of Double Uneven Step Distributing Planar Coils for Crack Detection // IEEJ Trans. Sensors Micromachines. 2008. V. 128. No. 1. P. 18-23. doi: 10.1541/ieejsmas.128.18
  4. Kiselev E.K., Gol'dshtein A.E. Eddy-Current System for Testing Inner Diameter of Pipes // Russ. J. Nondestruct. Test. 2019. V. 55. No. 3. P. 210-216. doi: 10.1134/S1061830919030069
  5. Nadzri N.A. Development of Eddy Current Testing System for Welding Inspection // 2018 9th IEEE Control Syst. Grad. Res. Colloq. 2018. P. 94-98. doi: 10.1109/ICSGRC.2018.8657511
  6. Jiang Feng, Liu S., Xin S. Influences of Excitation Current Frequency and Amplitude on Corrosion Evaluation Based on Analytical Model for Surface Magnetic Field // Russ. J. Nondestruct. Test. 2020. V. 56. No. 8. P. 668-680. doi: 10.1134/S1061830920080057
  7. Mardaninejad R., Safizadeh M.S. Gas Pipeline Corrosion Mapping Through Coating Using Pulsed Eddy Current Technique // Russ. J. Nondestruct. Test. 2019. V. 55. No. 11. P. 858-867. doi: 10.1134/S1061830919110068
  8. Sasayama T., Ishida T., Matsuo M., Enpuku K. Thickness Measurement of an Iron Plate Using Low-Frequency Eddy Current Testing With an HTS Coil // IEEE Trans. Appl. Supercond. Aug. 2016. V. 26. No. 5. P. 1-5. doi: 10.1109/TASC.2016.2535366
  9. Repelianto A.S., Kasai N. The improvement of flaw detection by the configuration of uniform eddy current probes // Sensors (Switzerland). 2019. V. 19. No. 2. doi: 10.3390/s19020397
  10. Saari M.M., Nadzri N.A., Zaini M.A.H.P., Ramlan N.H., Tsukada K. A Low-frequency Eddy Current Probe Based on Miniature Fluxgate Array for Defect Evaluation in Steel Components // IEEE Trans. Magn. 2021. P. 1-5. doi: 10.1109/TMAG.2021.3076441
  11. Zaini M.A.H.P., Saari M.M., Nadzri N.A.I., Aziz Z., Ramlan N.H., Tsukada K. Extraction of Flux Leakage and Eddy Current Signals Induced by Submillimeter Backside Slits on Carbon Steel Plate Using a Low-Field AMR Differential Magnetic Probe // IEEE Access. 2021. V. 9. P. 146755-146770. doi: 10.1109/ACCESS.2021.3123421
  12. Pavlyuchenko V.V., Doroshevich E.S. Detecting Extended Complex-Shaped Defects in Electroconductive Plates Using a Magnetic Carrier // Russ. J. Nondestruct. Test. 2019. V. 55. No. 3. P. 217-224. doi: 10.1134/S1061830919030094
  13. Saari M.M. et al. Design of eddy current testing probe for surface defect evaluation // Int. J. Automot. Mech. Eng. 2019. V. 16. No. 1. doi: 10.15282/ijame.16.1.2019.19.0481
  14. Yoshimura W., Sasayama T., Enpuku K. Optimal Frequency of Low-Frequency Eddy-Current Testing for Detecting Defects on the Backside of Thick Steel Plates // IEEE Trans. Magn. 2019. V. PP. P. 1-5. doi: 10.1109/TMAG.2019.2896590
  15. Vyhnanek J., Ripka P. Experimental Comparison of the Low-Frequency Noise of Small-Size Magnetic Sensors // IEEE Trans. Magn. 2017. V. 53. No. 4. doi: 10.1109/TMAG.2016.2633398
  16. Shleenkov A.S., Bulychev O.A., Shleenkov S.A., Novgorodov D.V. Features and Advantages of Applying Anisotropic Magnetoresistive Field Sensors to Testing the Full Volume of Small- and Medium-Diameter Pipes // Russ. J. Nondestruct. Test. 2020. V. 56. No. 5. P. 417-425. doi: 10.1134/S1061830920050083
  17. Postolache O., Ramos H.G., Ribeiro A.L.Computer Standards & Interfaces Detection and characterization of defects using GMR probes and arti fi cial neural networks // Comput. Stand.Interfaces. 2011. V. 33. No. 2. P. 191-200. doi: 10.1016/j.csi.2010.06.011
  18. Carr C., Graham D., Macfarlane J.C., Donaldson G.B. HTS SQUIDs for the nondestructive evaluation of composite structures. V. 1387.
  19. Hatsukade Y., Tanaka S. Mobile NDE System Utilizing Robust HTS-SQUID Magnetometer for Use in Unshielded Environments // IEEE Trans. Appl. Supercond. 2016. V. 26. No. 3. doi: 10.1109/TASC.2015.2512845
  20. Xu Z., Wang X., Deng Y. Rotating focused field eddy-current sensing for arbitrary orientation defects detection in carbon steel // Sensors (Switzerland). 2020. V. 20. No. 8. doi: 10.3390/s20082345
  21. Chang. Y., Jiao J., Li G., Liu X., He C., Wu B. Effects of excitation system on the performance of magnetic-flux-leakage-type non-destructive testing // Sensors Actuators A Phys. Dec. 2017. V. 268. P. 201-212. doi: 10.1016/j.sna.2017.08.009

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>