Approximation of Minimax Solutions of Hamilton—Jacobi Functional Equations for Time-Delay Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A minimax solution of the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives and a condition at the right end is considered. Hamilton-Jacobi equations of this type arise in dynamical optimization problems for time-delay systems. Their approximation is associated with additional issues of a valid transition from an infinite-dimensional functional argument of the desired solution to a finite-dimensional argument. Earlier, the schemes based on the piecewise linear approximation of the functional argument and the correctness properties of minimax solutions were studied. In this paper, a scheme for the approximation of Hamilton-Jacobi functional equations with coinvariant derivatives by usual Hamilton-Jacobi partial differential equations is proposed and justified. The scheme is based on the approximation of the characteristic functional-differential inclusions used in the definition of the desired minimax solution by ordinary differential inclusions.

作者简介

M. Gomoyunov

Krasovskii Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: m.i.gomoyunov@gmail.com
俄罗斯联邦, Yekaterinburg, 620990

N. Lukoyanov

Krasovskii Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: nyul@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990

A. Plaksin

Krasovskii Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: a.r.plaksin@gmail.com
俄罗斯联邦, Yekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019