Approximation of Minimax Solutions of Hamilton—Jacobi Functional Equations for Time-Delay Systems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A minimax solution of the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives and a condition at the right end is considered. Hamilton-Jacobi equations of this type arise in dynamical optimization problems for time-delay systems. Their approximation is associated with additional issues of a valid transition from an infinite-dimensional functional argument of the desired solution to a finite-dimensional argument. Earlier, the schemes based on the piecewise linear approximation of the functional argument and the correctness properties of minimax solutions were studied. In this paper, a scheme for the approximation of Hamilton-Jacobi functional equations with coinvariant derivatives by usual Hamilton-Jacobi partial differential equations is proposed and justified. The scheme is based on the approximation of the characteristic functional-differential inclusions used in the definition of the desired minimax solution by ordinary differential inclusions.

Sobre autores

M. Gomoyunov

Krasovskii Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: m.i.gomoyunov@gmail.com
Rússia, Yekaterinburg, 620990

N. Lukoyanov

Krasovskii Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: nyul@imm.uran.ru
Rússia, Yekaterinburg, 620990

A. Plaksin

Krasovskii Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: a.r.plaksin@gmail.com
Rússia, Yekaterinburg, 620990

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019